6 research outputs found
Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens
We investigated the effects of bicarbonate on the growth of several different bacteria as well as its effects on biofilm formation and intracellular cAMP concentration in Pseudomonas aeruginosa. Biofilm formation was examined in 96-well plates, with or without bicarbonate. The cAMP production of bacteria was measured by a commercial assay kit. We found that NaHCO3 (100 mmol l-1) significantly inhibited, whereas NaCl (100 mmol l-1) did not influence the growth of planktonic bacteria. MIC and MBC measurements indicated that the effect of HCO3- is bacteriostatic rather than bactericidal. Moreover, NaHCO3 prevented biofilm formation as a function of concentration. Bicarbonate and alkalinization of external pH induced a significant increase in intracellular cAMP levels. In conclusion, HCO3- impedes the planktonic growth of different bacteria and impedes biofilm formation by P. aeruginosa that is associated with increased intracellular cAMP production. These findings suggest that aerosol inhalation therapy with HCO3- solutions may help improve respiratory hygiene in patients with cystic fibrosis and possibly other chronically infected lung diseases
Recognition of complex mental states in patients with alcoholism after long-term abstinence
AIMS: We used an associative learning task in order to investigate cognitive dysfunctions in alcohol dependence. This test is suitable for the assessment of stimulus-response learning and memory generalization (acquired equivalence), which is related to medial temporal lobe functioning. METHODS: Twenty patients with alcohol dependence (abstinence: >6 months) and 20 matched healthy controls participated in the study. In the task, antecedent stimuli were cartoon faces (girl, boy, man and woman) and consequent stimuli were color cartoon fishes. The task was to learn face-fish associations using feedback. In the transfer phase, the fish-face pairs were generalized to new associations. RESULTS: There was no significant difference between patients and controls during the acquisition phase of fish-face associations. In the transfer phase, patients were impaired relative to controls. We found no association between task performance and intelligence quotient. CONCLUSION: These results suggest that abstinent patients with alcohol dependence show marked dysfunctions in the generalization of associations, which may indicate the dysfunction of the medial temporal lobe
Recommended from our members
Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens.
We investigated the effects of bicarbonate on the growth of several different bacteria as well as its effects on biofilm formation and intracellular cAMP concentration in Pseudomonas aeruginosa. Biofilm formation was examined in 96-well plates, with or without bicarbonate. The cAMP production of bacteria was measured by a commercial assay kit. We found that NaHCO3 (100 mmol l-1) significantly inhibited, whereas NaCl (100 mmol l-1) did not influence the growth of planktonic bacteria. MIC and MBC measurements indicated that the effect of HCO 3 - is bacteriostatic rather than bactericidal. Moreover, NaHCO3 prevented biofilm formation as a function of concentration. Bicarbonate and alkalinization of external pH induced a significant increase in intracellular cAMP levels. In conclusion, HCO 3 - impedes the planktonic growth of different bacteria and impedes biofilm formation by P. aeruginosa that is associated with increased intracellular cAMP production. These findings suggest that aerosol inhalation therapy with HCO 3 - solutions may help improve respiratory hygiene in patients with cystic fibrosis and possibly other chronically infected lung diseases
Small molecule somatostatin receptor subtype 4 (sst4) agonists are novel anti-inflammatory and analgesic drug candidates
We provided strong proof of concept evidence that somatostatin mediates potent analgesic and anti-inflammatory actions via its receptor subtype 4 (sst4) located both at the periphery and the central nervous system. Therefore, sst4 agonists are promising novel drug candidates for neuropathic pain and neurogenic inflammation, but rational drug design was not possible due to the lack of knowledge about its 3-dimensional structure. We modeled the sst4 receptor structure, described its agonist binding properties, and characterized the binding of our novel small molecule sst4 agonists (4-phenetylamino-7H-pyrrolo[2,3-d]pyrimidine derivatives) using an in silico platform. In addition to the in silico binding data, somatostatin displacement by Compound 1 was demonstrated in the competitive binding assay on sst4-expressing cells. In vivo effects were investigated in rat models of neurogenic inflammation and chronic traumatic neuropathic pain. We defined high- and low-affinity binding pockets of sst4 for our ligands, binding of the highest affinity compounds were similar to that of the reference ligand J-2156. We showed potent G-protein activation with the highest potency of 10 nM EC50 value and highest efficacy of 342%. Oral administration of 100 μg/kg of 5 compounds significantly inhibited acute neurogenic plasma protein extravasation in the paw skin by 40-60%, one candidate abolished and 3 others diminished sciatic nerve-ligation induced neuropathic hyperalgesia by 28-62%. The in silico predictions on sst4-ligands were tested in biological systems. Low oral dose of our novel agonists inhibit neurogenic inflammation and neuropathic pain, which opens promising drug developmental perspectives for these unmet medical need conditions