108 research outputs found

    Hovmöller diagrams of climate anomalies in NCEP/NCAR reanalysis from 1948 to 2009

    Get PDF
    Atmospheric and oceanic reanalysis data of the past 60years are visualized by time-latitude cross sections which inform about temporal and latitudinal variability, changes, and meridional circulation of the climate system on time scales from years to decades. The diagrams ease the understanding of climate dynamics in a similar way as the Hovmöller diagram has clarified the zonal propagation of synoptic-scale waves in a latitude band. Thus the time-latitude cross sections are referred to as Hovmöller diagrams of climate anomalies. Various parameters are selected at the Earth's surface level: air temperature, pressure, sea surface temperature, column-integrated atmospheric water vapour (IWV), surface relative humidity, and surface wind. Contour lines of one parameter are overlayed on the color image of the other parameter so that relations and coincidences of trends, oscillations, and sudden changes of the climate are revealed. Temporal variations of IWV and surface relative humidity appear to be related to the strength of the Southern polar front jet. In case of ENSO 1997/1998, the equatorial IWV enhancement is accompanied by acceleration of the meridional circulation cells of the Southern Hemisphere. Meridional surface wind data suggest the existence of double polar cells in both hemispheres. The Southern polar cells switched to a higher circulation speed in 1997, and surface relative humidity increased over Antarctica. A sudden and persistent decrease of surface pressure occurred in Antarctica around 1980. Since 2000, a rapid increase of surface air temperature, sea surface temperature, and IWV occurs in the Northern Hemisphere. These results of NCEP/NCAR reanalysis have to be cross-validated with other reanalyses, climate models, and pure observations which will be a major endeavou

    Water vapor transport in the lower mesosphere of the subtropics: a trajectory analysis

    Get PDF
    The Institute of Applied Physics operates an airborne microwave radiometer AMSOS that measures the rotational transition line of water vapor at 183.3 GHz. Water vapor profiles are retrieved for the altitude range from 15 to 75 km along the flight track. We report on a water vapor enhancement in the lower mesosphere above India and the Arabian Sea. The measurements took place on our flight from Switzerland to Australia and back in November 2005 conducted during EC- project SCOUT-O3. We find an enhancement of up to 25% in the lower mesospheric H<sub>2</sub>O volume mixing ratio measured on the return flight one week after the outward flight. The origin of the air is traced back by means of a trajectory model in the lower mesosphere and wind fields from ECMWF. During the outward flight the air came from the Atlantic Ocean around 25 N and 40 W. On the return flight the air came from northern India and Nepal around 25 N and 90 E. Mesospheric H<sub>2</sub>O measurements from Aura/MLS confirm the transport processes of H<sub>2</sub>O derived by trajectory analysis of the AMSOS data. Thus the large variability of H<sub>2</sub>O VMR during our flight is explained by a change of the winds in the lower mesosphere. This study shows that trajectory analysis can be applied in the mesosphere and is a powerful tool to understand the large variability in mesospheric H<sub>2</sub>O

    Long-term observation of midlatitude quasi 2-day waves by a water vapor radiometer

    Get PDF
    A mesospheric water vapor data set obtained by the middle atmospheric water vapor radiometer (MIAWARA) close to Bern, Switzerland (46.88°N, 7.46°E) during October 2010 to September 2017 is investigated to study the long-term evolution and variability of quasi 2-day waves (Q2DWs). We present a climatological overview and an insight on the dynamical behavior of these waves with the occurring spectrum of periods as seen from a midlatitude observation site. Such a large and nearly continuous measurement data set as ours is rare and of high scientific value. The core results of our investigation indicate that the activity of the Q2DW manifests in burst-like events and is higher during winter months (November–February) than during summer months (May–August) for the altitude region of the mesosphere (up to 0.02hPa in winter and up to 0.05hPa in summer) accessible for the instrument. Single Q2DW events reach at most about 0.8ppm in the H2O amplitudes. Further, monthly mean Q2DW amplitude spectra are presented and reveal a high-frequency variability between different months. A large fraction of identified Q2DW events (20%) develop periods between 38 and 40h. Further, we show the temporal evolution of monthly mean Q2DW oscillations continuously for all months and separated for single months over 7 years. The analysis of autobicoherence spectra gives evidence that Q2DWs are sometimes phase coupled to diurnal oscillations to a high degree and to waves with a period close to 18h

    First continuous ground-based observations of long period oscillations in strato-/mesospheric wind profiles

    Get PDF
    Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from measurements of tracers, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, mid and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20–40 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis model data revealed remarkably good agreement below 0.3 hPa but discrepancies above

    On forced and free atmospheric oscillations near the 27-day periodicity

    Get PDF
    The Whole Atmosphere Community Climate Model was used to investigate the influences of solar fluctuations on zonal wind oscillations. Two simulations were conducted with short-term solar forcing (<35 days) on and off. We found that a 27-day wave is an inherent feature of the atmosphere when the short-term solar forcing is inactive. This internal 27-day oscillation comes along with other periods of the extra-long period wave band (20–40 days) and cannot be linked to the Sun’s rotation period. When the short-term solar variability is part of the forcing, including the solar 27-day periodicity, it affects a wide range of the spectrum of zonal wind. At mid-latitudes, a 10-day wave emerges by the short-term solar forcing, which suggests that indirect and nonlinear interactions are involved. Solar short-term variability seems to generate atmospheric perturbations that interact with modes of the internal wave spectrum or the background mean flow. A robust and clear solar interpretation of these wind oscillations is challenging. However, dynamical responses to short-term solar variability exist and need further investigation

    Significant decline of mesospheric water vapor at the NDACC site Bern in the period 2007 to 2018

    Get PDF
    The middle atmospheric water vapor radiometer MIAWARA is located close to Bern in Zimmerwald (46.88°N, 7.46°E, 907m) and is part of the Network for the Detection of Atmospheric Composition Change (NDACC). Initially built in the year 2002, a major upgrade of the instruments spectrometer allowed to continuously measure middle atmospheric water vapor since April 2007. Thenceforward to Mai 2018, a time series of more than 11 years has been gathered, that makes a first trend estimate possible. For the trend estimation, a robust multi-linear parametric trend model has been used. The trend model encompasses a linear term, a solar activity tracker, the El Niño–Southern Oscillation (ENSO) index, the quasi-biennial oscillation (QBO) as well as the annual and semi-annual oscillation. In the time period April 2007 to Mai 2018 we find a significant decline in water vapor by −0.6±0.2ppmdecade−1 between 61 and 72km. Below the stratopause level (~48km) a smaller reduction of H2O of up to −0.3±0.1ppmdecade−1 is detected

    Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data

    Get PDF
    Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 % per decade to 5 % per decade,with deviating trends at some GNSS stations. Trends were significantly positive at 17 % of all GNSS stations, which of-ten lie at higher altitudes (between 850 and 1650 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in the whole of Switzerland is not clear everywhere. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the Jungfraujoch high-altitude station, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general,we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processe
    • …
    corecore