248 research outputs found
The SPF27 Homologue Num1 Connects Splicing and Kinesin 1-Dependent Cytoplasmic Trafficking in Ustilago maydis
The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking
Uniparental mitochondrial DNA inheritance is not affected in Ustilago maydis Δatg11 mutants blocked in mitophagy
Background: Maternal or uniparental inheritance (UPI) of mitochondria is generally observed in sexual eukaryotes, however, the underlying mechanisms are diverse and largely unknown. Recently, based on the use of mutants blocked in autophagy, it has been demonstrated that autophagy is required for strict maternal inheritance in the nematode Caenorhabditis elegans. Uniparental mitochondrial DNA (mtDNA) inheritance has been well documented for numerous fungal species, and in particular, has been shown to be genetically governed by the mating-type loci in the isogamous species Cryptococcus neoformans, Phycomyces blakesleeanus and Ustilago maydis. Previously, we have shown that the a2 mating-type locus gene lga2 is decisive for UPI during sexual development of U. maydis. In axenic culture, conditional overexpression of lga2 triggers efficient loss of mtDNA as well as mitophagy. To assess a functional relationship, we have investigated UPI in U. maydis Δatg11 mutants, which are blocked in mitophagy. Results: This study has revealed that Äatg11 mutants are not affected in pathogenic development and this has allowed us to analyse UPI under comparable developmental conditions between mating-compatible wild-type and mutant strain combinations. Explicitly, we have examined two independent strain combinations that gave rise to different efficiencies of UPI. We demonstrate that in both cases UPI is atg11-independent, providing evidence that mitophagy is not critical for UPI in U. maydis, even under conditions of strict UPI. Conclusions: Until now, analysis of a role of mitophagy in UPI has not been reported for microbial species. Our study suggests that selective autophagy does not contribute to UPI in U. maydis, but is rather a consequence of selective mtDNA elimination in response to mitochondrial damage. © 2015 Wagner-Vogel et al.; licensee BioMed Central
Large two-level magnetoresistance effect in doped manganite grain boundary junctions
We performed a systematic analysis of the tunneling magnetoresistance (TMR)
effect in single grain boundary junctions formed in epitaxial
La(2/3)Ca(1/3)MnO(3) films deposited on SrTiO(3) bicrystals. For magnetic
fields H applied parallel to the grain boundary barrier, an ideal two-level
resistance switching behavior with sharp transitions is observed with a TMR
effect of up to 300% at 4.2 K and still above 100% at 77 K. Varying the angle
between H and the grain boundary results in differently shaped resistance vs H
curves. The observed behavior is explained within a model of magnetic domain
pinning at the grain boundary interface.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (Rapid Comm.
CrO2: a self-doped double exchange ferromagnet
Band structure calculations of CrO2 carried out in the LSDA+U approach reveal
a clear picture of the physics behind the metallic ferromagnetic properties.
Arguments are presented that the metallic ferromagnetic oxide CrO2 belongs to a
class of materials in which magnetic ordering exists due to double exchange (in
this respect CrO2 turns out to be similar to the CMR manganates). It is
concluded that CrO2 has small or even negative charge transfer gap which can
result in self-doping. Certain experiments to check the proposed picture are
suggested.Comment: 4 pages, 4 Figure
Bulk experimental evidence of half-metallic ferromagnetism in doped manganites
We report precise measurements and quantitative data analysis on the
low-temperature resistivity of several ferromagnetic manganite films. We
clearly show that there exists a T^{4.5} term in low-temperature resistivity,
and that this term is in quantitative agreement with the quantum theory of
two-magnon scattering for half metallic ferromagnets. Our present results
provide the first bulk experimental evidence of half-metallic ferromagnetism in
doped manganites.Comment: 4 pages, 4 figure
Basic obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor
We have calculated the spin-polarization effects of a current in a two
dimensional electron gas which is contacted by two ferromagnetic metals. In the
purely diffusive regime, the current may indeed be spin-polarized. However, for
a typical device geometry the degree of spin-polarization of the current is
limited to less than 0.1%, only. The change in device resistance for parallel
and antiparallel magnetization of the contacts is up to quadratically smaller,
and will thus be difficult to detect.Comment: Revtex, 4 pages, 3 figures (eps), Definition of spin pilarization
changed to standard definition in GMR, some straight forward algebra removed.
To appear as PRB Rap. Comm. August 15t
Gutzwiller-Correlated Wave Functions: Application to Ferromagnetic Nickel
Ferromagnetic Nickel is the most celebrated iron group metal with pronounced
discrepancies between the experimental electronic properties and predictions of
density functional theories. In this work, we show in detail that the recently
developed multi-band Gutzwiller theory provides a very good description of the
quasi-particle band structure of nickel. We obtain the correct exchange
splittings and we reproduce the experimental Fermi-surface topology. The
correct (111)-direction of the magnetic easy axis and the right order of
magnitude of the magnetic anisotropy are found. Our theory also reproduces the
experimentally observed change of the Fermi-surface topology when the magnetic
moment is oriented along the (001)-axis. In addition to the numerical study, we
give an analytical derivation for a much larger class of variational
wave-functions than in previous investigations. In particular, we cover cases
of superconductivity in multi-band lattice systems.Comment: 35 pages, 3 figure
First principles electronic structure of spinel LiCr2O4: A possible half-metal?
We have employed first-principles electronic structure calculations to
examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5}
electronic configuration. The cell (cubic) and internal (oxygen position)
structural parameters have been obtained for this compound through structural
relaxation in the first-principles framework. Within the one-electron band
picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The
electronic structure is substantially different from the closely related and
well known rutile half-metal CrO2. In particular, we find a smaller conduction
band width in the spinel compound, perhaps as a result of the distinct topology
of the spinel crystal structure, and the reduced oxidation state. The magnetism
and half-metallicity of LiCr2O4 has been mapped in the parameter space of its
cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}),
heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest
the effectiveness of a nearly-rigid band picture involving simple shifts of the
position of E_F in these very different materials. Comparisons are also made
with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that
undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis
A novel, high-affinity sucrose transporter identified in the plasma membrane of the plant pathogen Ustilago maydis is essential for fungal virulence and successful infection of maize
Single Spin Superconductivity: Formulation and Ginzburg-Landau Theory
We describe a novel superconducting phase that arises due to a pairing
instability of the half-metallic antiferromagnetic (HM AFM) normal state. This
single spin superconducting (SSS) phase contains broken time reversal symmetry
in addition to broken gauge symmetry, the former due to the underlying magnetic
order in the normal state. A classification of normal state symmetries leads to
the conclusion that the HM AFM normal phase whose point group contains the
inversion operator contains the least symmetry possible which still allows for
a zero momentum pairing instability. The Ginzburg-Landau free energy for the
superconducting order parameter is constructed consistent with the symmetry of
the normal phase, electromagnetic gauge invariance and the crystallographic
point group symmetry including inversion. For cubic, hexagonal and tetragonal
point groups, the possible symmetries of the superconducting phase are
classified, and the free energy is used to construct a generalized phase
diagram. We identify the leading candidate out of the possible SSS phases for
each point group. The symmetry of the superconducting phase is used to
determine the cases where the gap function has generic zeros (point or line
nodes) on the Fermi surface. Such nodes always occur, hence thermodynamic
properties will have power-law behavior at low temperature.Comment: 39 pages, RevTeX, 4 PostScript figures included, submitted to Phys.
Rev.
- …