18 research outputs found

    Dichlorvos exposure impedes extraction and amplification of DNA from insects in museum collections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The insecticides dichlorvos, paradichlorobenzene and naphthalene have been commonly used to eradicate pest insects from natural history collections. However, it is not known how these chemicals affect the DNA of the specimens in the collections. We thus tested the effect of dichlorvos, paradichlorobenzene and naphthalene on DNA of insects (<it>Musca domestica</it>) by extracting and amplifying DNA from specimens exposed to insecticides in two different concentrations over increasing time intervals.</p> <p>Results</p> <p>The results clearly show that dichlorvos impedes both extraction and amplification of mitochondrial and nuclear DNA after relatively short time, whereas paradichlorobenzene and naphthalene do not.</p> <p>Conclusion</p> <p>Collections treated with paradichlorobenzene and naphthalene, are better preserved concerning DNA, than those treated with dichlorvos. Non toxic pest control methods should, however, be preferred due to physical damage of specimens and putative health risks by chemicals.</p

    Phylogenetic relationships in the order Ericales s.l. : analyses of molecular data from five genes from the plastid and mitochondrial genomes

    No full text
    Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well‐supported groups were identified, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae‐Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae‐Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styracaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae

    Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups

    Get PDF
    Obtaining a well supported schema of phylogenetic relationships among the major groups of living organisms requires considering as much taxonomic diversity as possible, but the computational cost of calculating large phylogenies has so far been a major obstacle. We show here that the parsimony algorithms implemented in TNT can successfully process the largest phylogenetic data set ever analysed, consisting of molecular sequences and morphology for 73 060 eukaryotic taxa. The trees resulting from molecules alone display a high degree of congruence with the major taxonomic groups, with a small proportion of misplaced species; the combined data set retrieves these groups with even higher congruence. This shows that tree-calculation algorithms effectively retrieve phylogenetic history for very large data sets, and at the same time provides strong corroboration for the major eukaryotic lineages long recognized by taxonomists.Fil: Goloboff, Pablo Augusto. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Catalano, Santiago Andres. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Mirande, Juan Marcos. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Szumik, Claudia Adriana. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; ArgentinaFil: Arias, J. Salvador. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; ArgentinaFil: Källersjö, Mari. Göteborgs Botaniska Trädgård; SueciaFil: Farris, James S.. Molekylärsystematiska laboratoriet; Sueci

    Diversification of Neoaves: integration of molecular sequence data and fossils

    No full text
    Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves
    corecore