516 research outputs found
Random lattice superstrings
We propose some new simplifying ingredients for Feynman diagrams that seem
necessary for random lattice formulations of superstrings. In particular, half
the fermionic variables appear only in particle loops (similarly to loop
momenta), reducing the supersymmetry of the constituents of the Type IIB
superstring to N=1, as expected from their interpretation in the 1/N expansion
as super Yang-Mills.Comment: Section 5 which describes contributions of the string measure adde
On finitely ambiguous B\"uchi automata
Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one
accepting run per word, are a useful restriction of B\"uchi automata that is
well-suited for probabilistic model-checking. In this paper we propose a more
permissive variant, namely finitely ambiguous B\"uchi automata, a
generalisation where each word has at most accepting runs, for some fixed
. We adapt existing notions and results concerning finite and bounded
ambiguity of finite automata to the setting of -languages and present a
translation from arbitrary nondeterministic B\"uchi automata with states to
finitely ambiguous automata with at most states and at most accepting
runs per word
Genetics of Tinnitus: Time to Biobank Phantom Sounds
Tinnitus is a common phantom sensation resulting most often from sensory deprivation, and for which little knowledge on the molecular mechanisms exists. While the existing evidence for a genetic influence on the condition has been until now sparse and underpowered, recent data suggest that specific forms of tinnitus have a strong genetic component revealing that not all tinnitus percepts are alike, at least in how they are genetically driven. These new findings pave the way for a better understanding on how phantom sensations are molecularly driven and call for international biobanking efforts
Twisted Superspace for N=D=2 Super BF and Yang-Mills with Dirac-K\"ahler Fermion Mechanism
We propose a twisted D=N=2 superspace formalism. The relation between the
twisted super charges including the BRST charge, vector and pseudo scalar super
charges and the N=2 spinor super charges is established. We claim that this
relation is essentially related with the Dirac-K\"ahler fermion mechanism. We
show that a fermionic bilinear form of twisted N=2 chiral and anti-chiral
superfields is equivalent to the quantized version of BF theory with the Landau
type gauge fixing while a bosonic bilinear form leads to the N=2 Wess-Zumino
action. We then construct a Yang-Mills action described by the twisted N=2
chiral and vector superfields, and show that the action is equivalent to the
twisted version of the D=N=2 super Yang-Mills action, previously obtained from
the quantized generalized topological Yang-Mills action with instanton gauge
fixing.Comment: 36 page
A holomorphic representation of the Jacobi algebra
A representation of the Jacobi algebra by first order differential operators with polynomial
coefficients on the manifold is presented. The
Hilbert space of holomorphic functions on which the holomorphic first order
differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the
Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI:
10.1142/S0129055X12920018, references update
Cavitation inception of a van der Waals fluid at a sack-wall obstacle
Cavitation in a liquid moving past a constraint is numerically investigated
by means of a free-energy lattice Boltzmann simulation based on the van der
Waals equation of state. The fluid is streamed past an obstacle and, depending
on the pressure drop between inlet and outlet, vapor formation underneath the
corner of the sack-wall is observed. The circumstances of cavitation formation
are investigated and it is found that the local bulk pressure and mean stress
are insufficient to explain the phenomenon. Results obtained in this study
strongly suggest that the viscous stress, interfacial contributions to the
local pressure, and the Laplace pressure are relevant to the opening of a vapor
cavity. This can be described by a generalization of Joseph's criterion that
includes these contributions. A macroscopic investigation measuring mass flow
rate behavior and discharge coefficient was also performed. As theoretically
predicted, mass flow rate increases linearly with the square root of the
pressure drop. However, when cavitation occurs, the mass flow growth rate is
reduced and eventually it collapses into a choked flow state. In the cavitating
regime, as theoretically predicted and experimentally verified, the discharge
coefficient grows with the Nurick cavitation number
The conundrum of using hyperoxia in COVID-19 treatment strategies: may intermittent therapeutic hyperoxia play a helpful role in the expression of the surface receptors ACE2 and Furin in lung tissue via triggering of HIF-1α?
In the current pandemic of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the therapeutic administration of oxygen is a common procedure in order to mitigate patient’s hypoxia in the course of severe corona virus disease 2019 (COVID-19) pneumonia. However, additional oxygen causes a variety of well-known side-effects, impacting a number of systems regulating cardiovascular and respiratory homeostasis as well as reactive oxygen species (ROS)-production via oxidative stress. In this article, we want to focus on intermittent changes in lung and tissue oxygenation, as changes in local pO2 may be able to trigger one of the key effectors of cellular oxygen-sensing, hypoxia-inducible factor-1α (HIF-1α) and, in downstream, the expression of angiotensin-converting enzyme-2 (ACE2) and Furin
Characterizing the turbulent drag properties of rough surfaces with a Taylor--Couette setup
Wall-roughness induces extra drag in wall-bounded turbulent flows. Mapping
any given roughness geometry to its fluid dynamic behaviour has been hampered
by the lack of accurate and direct measurements of skin-friction drag. Here the
Taylor-Couette (TC) system provides an opportunity as it is a closed system and
allows to directly and reliably measure the skin-friction. However, the
wall-curvature potentially complicates the connection between the wall friction
and the wall roughness characteristics. Here we investigate the effects of a
hydrodynamically fully rough surface on highly turbulent, inner cylinder
rotating, TC flow. We find that the effects of a hydrodynamically fully rough
surface on TC turbulence, where the roughness height k is three orders of
magnitude smaller than the Obukhov curvature length Lc (which characterizes the
effects of curvature on the turbulent flow, see Berghout et al. arXiv:
2003.03294, 2020), are similar to those effects of a fully rough surface on a
flat plate turbulent boundary layer (BL). Hence, the value of the equivalent
sand grain height ks, that characterizes the drag properties of a rough
surface, is similar to those found for comparable sandpaper surfaces in a flat
plate BL. Next, we obtain the dependence of the torque (skin-friction drag) on
the Reynolds number for given wall roughness, characterized by ks, and find
agreement with the experimental results within 5 percent. Our findings
demonstrate that global torque measurements in the TC facility are well suited
to reliably deduce wall drag properties for any rough surface.Comment: 18 pages, 13 figure
- …