516 research outputs found

    Random lattice superstrings

    Get PDF
    We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the Type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.Comment: Section 5 which describes contributions of the string measure adde

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word

    Genetics of Tinnitus: Time to Biobank Phantom Sounds

    Get PDF
    Tinnitus is a common phantom sensation resulting most often from sensory deprivation, and for which little knowledge on the molecular mechanisms exists. While the existing evidence for a genetic influence on the condition has been until now sparse and underpowered, recent data suggest that specific forms of tinnitus have a strong genetic component revealing that not all tinnitus percepts are alike, at least in how they are genetically driven. These new findings pave the way for a better understanding on how phantom sensations are molecularly driven and call for international biobanking efforts

    Twisted Superspace for N=D=2 Super BF and Yang-Mills with Dirac-K\"ahler Fermion Mechanism

    Full text link
    We propose a twisted D=N=2 superspace formalism. The relation between the twisted super charges including the BRST charge, vector and pseudo scalar super charges and the N=2 spinor super charges is established. We claim that this relation is essentially related with the Dirac-K\"ahler fermion mechanism. We show that a fermionic bilinear form of twisted N=2 chiral and anti-chiral superfields is equivalent to the quantized version of BF theory with the Landau type gauge fixing while a bosonic bilinear form leads to the N=2 Wess-Zumino action. We then construct a Yang-Mills action described by the twisted N=2 chiral and vector superfields, and show that the action is equivalent to the twisted version of the D=N=2 super Yang-Mills action, previously obtained from the quantized generalized topological Yang-Mills action with instanton gauge fixing.Comment: 36 page

    A holomorphic representation of the Jacobi algebra

    Full text link
    A representation of the Jacobi algebra h1su(1,1)\mathfrak{h}_1\rtimes \mathfrak{su}(1,1) by first order differential operators with polynomial coefficients on the manifold C×D1\mathbb{C}\times \mathcal{D}_1 is presented. The Hilbert space of holomorphic functions on which the holomorphic first order differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI: 10.1142/S0129055X12920018, references update

    Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Full text link
    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number

    The conundrum of using hyperoxia in COVID-19 treatment strategies: may intermittent therapeutic hyperoxia play a helpful role in the expression of the surface receptors ACE2 and Furin in lung tissue via triggering of HIF-1α?

    Get PDF
    In the current pandemic of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the therapeutic administration of oxygen is a common procedure in order to mitigate patient’s hypoxia in the course of severe corona virus disease 2019 (COVID-19) pneumonia. However, additional oxygen causes a variety of well-known side-effects, impacting a number of systems regulating cardiovascular and respiratory homeostasis as well as reactive oxygen species (ROS)-production via oxidative stress. In this article, we want to focus on intermittent changes in lung and tissue oxygenation, as changes in local pO2 may be able to trigger one of the key effectors of cellular oxygen-sensing, hypoxia-inducible factor-1α (HIF-1α) and, in downstream, the expression of angiotensin-converting enzyme-2 (ACE2) and Furin

    Characterizing the turbulent drag properties of rough surfaces with a Taylor--Couette setup

    Get PDF
    Wall-roughness induces extra drag in wall-bounded turbulent flows. Mapping any given roughness geometry to its fluid dynamic behaviour has been hampered by the lack of accurate and direct measurements of skin-friction drag. Here the Taylor-Couette (TC) system provides an opportunity as it is a closed system and allows to directly and reliably measure the skin-friction. However, the wall-curvature potentially complicates the connection between the wall friction and the wall roughness characteristics. Here we investigate the effects of a hydrodynamically fully rough surface on highly turbulent, inner cylinder rotating, TC flow. We find that the effects of a hydrodynamically fully rough surface on TC turbulence, where the roughness height k is three orders of magnitude smaller than the Obukhov curvature length Lc (which characterizes the effects of curvature on the turbulent flow, see Berghout et al. arXiv: 2003.03294, 2020), are similar to those effects of a fully rough surface on a flat plate turbulent boundary layer (BL). Hence, the value of the equivalent sand grain height ks, that characterizes the drag properties of a rough surface, is similar to those found for comparable sandpaper surfaces in a flat plate BL. Next, we obtain the dependence of the torque (skin-friction drag) on the Reynolds number for given wall roughness, characterized by ks, and find agreement with the experimental results within 5 percent. Our findings demonstrate that global torque measurements in the TC facility are well suited to reliably deduce wall drag properties for any rough surface.Comment: 18 pages, 13 figure
    corecore