8 research outputs found

    The MRI Sepsis Score: An Innovative Tool for the Evaluation of Septic Peritonitis in Mice Using 7-Tesla Small Animal MRI

    Get PDF
    Background: Magnetic resonance imaging (MRI) techniques are rarely used in the context of abdominal sepsis and in sepsis research. This study investigates the impact of MRI for monitoring septic peritonitis in an animal model (colon ascendens stent-induced peritonitis, CASP). The CASP model closely mimics that of human disease and is highly standardized. The most frequently employed readout parameter in mouse CASP studies is prolonged or decreased rate of survival. Monitoring the progression of peritonitis via MRI could provide a helpful tool in the evaluation of severity. The use of alternative readout systems could very well reduce the number of research animals. Perspectively, clinical improvement after certain treatment could be classified. Methods: This study describes for the first time MRI findings following the induction of septic peritonitis in mice using the CASP model. Two sublethal groups of mice with septic peritonitis were investigated. Each had received one of two differing stent diameters in order to control the leakage of feces into the abdominal cavity. Each mouse served as its own control. Imaging and analyses were performed blinded. Gut diameters, stomach volume, abdominal organ wall diameters, and volume of the adrenal glands were measured. Serum corticosterone levels were detected using ELISA. Serum IL-6, TNF-α, IL-1β, and IL-10 levels were screened by cytometric bead array. Statistical analysis was performed using the Mann-Whitney U test for nonparametric probes and the Kruskal-Wallis and t tests. Results: Using a 7-tesla MRI scanner 24 and 48 h after induction of septic peritonitis, interenteric fluid, organ swelling of spleen and adrenal glands, as well as dilatation of the stomach were compared to nonseptic conditions. Swelling of adrenal glands resulted in an increased serum corticosterone level. In addition, the wall of the intestine bowel was thickened. Based upon these findings, an MRI score (MRI sepsis score, MSS) for abdominal sepsis in mice was established. Reduced stent sizes led to reduced severity of the abdominal sepsis, which could be reproduced in the MSS, which is described here for the first time. Conclusions: Intraabdominal variations during septic peritonitis are detectable by MRI techniques. MRI methods should become a more important tool for the evaluation of abdominal peritonitis. MSS could provide an interesting tool for the evaluation of therapeutic strategies

    The MRI Sepsis Score: An Innovative Tool for the Evaluation of Septic Peritonitis in Mice Using 7-Tesla Small Animal MRI

    Get PDF
    Background: Magnetic resonance imaging (MRI) techniques are rarely used in the context of abdominal sepsis and in sepsis research. This study investigates the impact of MRI for monitoring septic peritonitis in an animal model (colon ascendens stent-induced peritonitis, CASP). The CASP model closely mimics that of human disease and is highly standardized. The most frequently employed readout parameter in mouse CASP studies is prolonged or decreased rate of survival. Monitoring the progression of peritonitis via MRI could provide a helpful tool in the evaluation of severity. The use of alternative readout systems could very well reduce the number of research animals. Perspectively, clinical improvement after certain treatment could be classified. Methods: This study describes for the first time MRI findings following the induction of septic peritonitis in mice using the CASP model. Two sublethal groups of mice with septic peritonitis were investigated. Each had received one of two differing stent diameters in order to control the leakage of feces into the abdominal cavity. Each mouse served as its own control. Imaging and analyses were performed blinded. Gut diameters, stomach volume, abdominal organ wall diameters, and volume of the adrenal glands were measured. Serum corticosterone levels were detected using ELISA. Serum IL-6, TNF-α, IL-1β, and IL-10 levels were screened by cytometric bead array. Statistical analysis was performed using the Mann-Whitney U test for nonparametric probes and the Kruskal-Wallis and t tests. Results: Using a 7-tesla MRI scanner 24 and 48 h after induction of septic peritonitis, interenteric fluid, organ swelling of spleen and adrenal glands, as well as dilatation of the stomach were compared to nonseptic conditions. Swelling of adrenal glands resulted in an increased serum corticosterone level. In addition, the wall of the intestine bowel was thickened. Based upon these findings, an MRI score (MRI sepsis score, MSS) for abdominal sepsis in mice was established. Reduced stent sizes led to reduced severity of the abdominal sepsis, which could be reproduced in the MSS, which is described here for the first time. Conclusions: Intraabdominal variations during septic peritonitis are detectable by MRI techniques. MRI methods should become a more important tool for the evaluation of abdominal peritonitis. MSS could provide an interesting tool for the evaluation of therapeutic strategies

    Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells

    Get PDF
    SIMPLE SUMMARY: Pancreatic cancer is a devastating disease with high mortality. The cancer is characterized by a dynamic and immunosuppressive tumor microenvironment (TME) with high numbers of macrophages. Gas plasma technology was previously suggested as a promising new tool in oncology and pancreatic cancer treatment. However, it is unclear how gas plasma-treated pancreatic cancer cells affect the phenotype and inflammatory profile of macrophages. Besides profound antitumor effects of gas plasma-exposed tumor cells, we identified in such co-cultures unique signatures of both pro- and anti-inflammatory mediators being secreted at elevated levels. These responses might be beneficial as they promote neither overshooting inflammation and metastasis nor immunosuppression, fueling tumor growth as a known consequence of anti-inflammation. ABSTRACT: Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy

    Increased protease-activated receptor 1 autoantibodies are associated with severe COVID-19

    No full text
    Immune perturbation is a hallmark of Coronavirus Disease 2019 (COVID-19) with ambiguous roles of various immune cell compartments. Plasma cells, responsible for antibody production, have a two-pronged response while mounting an immune defence with 1) physiological immune response producing neutralizing antibodies against protein structures of SARS-CoV-2 and 2) potentially deleterious autoantibody generation. Growing evidence hints towards broad activation of plasma cells and the presence of pathologic autoantibodies (abs) that mediate immune perturbation in acute COVID-19 [1]. Recently, a systematic screening for abs confirmed induction of diverse functional abs in SARS-CoV-2 infection, targeting several immunomodulatory proteins, including cytokines/chemokines and their respective G-protein coupled receptors (GPCR) [1]. Abs against GPCR act as agonistic and allosteric receptor modulators and are linked to chronic inflammatory diseases [2] and, as we recently demonstrated, disease severity in acute COVID-19 [3]
    corecore