411 research outputs found

    The Density Matrix Renormalization Group applied to single-particle Quantum Mechanics

    Full text link
    A simplified version of White's Density Matrix Renormalization Group (DMRG) algorithm has been used to find the ground state of the free particle on a tight-binding lattice. We generalize this algorithm to treat the tight-binding particle in an arbitrary potential and to find excited states. We thereby solve a discretized version of the single-particle Schr\"odinger equation, which we can then take to the continuum limit. This allows us to obtain very accurate results for the lowest energy levels of the quantum harmonic oscillator, anharmonic oscillator and double-well potential. We compare the DMRG results thus obtained with those achieved by other methods.Comment: REVTEX file, 21 pages, 3 Tables, 4 eps Figure

    Density Matrices for a Chain of Oscillators

    Full text link
    We consider chains with an optical phonon spectrum and study the reduced density matrices which occur in density-matrix renormalization group (DMRG) calculations. Both for one site and for half of the chain, these are found to be exponentials of bosonic operators. Their spectra, which are correspondingly exponential, are determined and discussed. The results for large systems are obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    Superfluid, Mott-Insulator, and Mass-Density-Wave Phases in the One-Dimensional Extended Bose-Hubbard Model

    Get PDF
    We use the finite-size density-matrix-renormalization-group (FSDMRG) method to obtain the phase diagram of the one-dimensional (d=1d = 1) extended Bose-Hubbard model for density ρ=1\rho = 1 in the UVU-V plane, where UU and VV are, respectively, onsite and nearest-neighbor interactions. The phase diagram comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density Wave (MDW). For small values of UU and VV, we get a reentrant SF-MI-SF phase transition. For intermediate values of interactions the SF phase is sandwiched between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We show, by a detailed finite-size scaling analysis, that the MI-SF transition is of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both KT and two-dimensional-Ising characters. For large values of UU and VV we get a direct, first-order, MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase boundaries join at a bicritical point at (U,V)=(8.5±0.05,4.75±0.05)U, V) = (8.5 \pm 0.05, 4.75 \pm 0.05).Comment: 10 pages, 15 figure

    Theoretische und experimentelle Untersuchungen zur zyklischen Thermoviskoplastizität

    Get PDF
    Im Rahmen dieser Arbeit wurde ein Viskoplastizitätsmodell nach Chaboche mit ausschließlich kinematischer Verfestigung untersucht. Hierbei wurden auch die Auswirkungen eines Temperaturgeschwindigkeitsterms in der kinematischen Verfestigung betrachtet. Am Werkstoff AISI 316L(N) wurden isotherme Versuche zur Bestimmung der Parameter des Modells sowie nichtisotherme Versuche zur Beurteilung der Möglichkeiten des Modells durchgeführt. Die Versuche haben gezeigt, daß sowohl der E - Modul als auch die Fließgrenze mit steigender Temperatur abnehmen. Der Werkstoff zeigt bei monotoner und bei zyklischer Belastung nennenswerte Verfestigung. Der Betrag der Spannungsrelaxation und somit die Viskosität des Werkstoffs bzw. die sich aufbauende Überspannung nimmt mit steigender Temperatur ab. Es zeigte sich, daß der Werkstoff eine der thermischen Zyklierung vorangehende Verformung mit zunehmender Lastspielzahl "vergißt". Die Gegenüberstellung von Versuch und Rechnung macht deutlich, daß die Modellantwort des verwendeten Viskoplastizitätsmodells als gute Näherung einzustufen ist. Dies gilt insbesondere während des ersten Lastwechsels. Zu höheren Lastspielzahlen hin wird die Differenz zwischen Versuch und Rechnung größer, da das Modell nicht in der Lage ist, die bei AISI 316L(N) auftretende zyklische Verfestigung nachzuvollziehen. In Bereichen, in denen der Betrag der Spannung und die Temperatur gleichzeitig zunehmen, kann es aufgrund der Temperaturabhängigkeit der Fließgrenze zu Unterschieden zwischen Versuch und Rechnung kommen

    The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction

    Full text link
    We study the one-dimensional Bose-Hubbard model using the Density-Matrix Renormalization Group (DMRG).For the cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott-insulators and charge density wave phases are determined. We find a direct phase transition between the charge density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the effective interactions in the superfluid phase are repulsive. It is known from Luttinger liquid theory that a single impurity causes the system to be insulating if the effective interactions are repulsive, and that an even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac-conductivity in the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is found in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure

    Radial bound states in the continuum for polarization-invariant nanophotonics

    Get PDF
    All-dielectric nanophotonics underpinned by the physics of bound states in the continuum (BICs) have demonstrated breakthrough applications in nanoscale light manipulation, frequency conversion and optical sensing. Leading BIC implementations range from isolated nanoantennas with localized electromagnetic fields to symmetry-protected metasurfaces with controllable resonance quality (Q) factors. However, they either require structured light illumination with complex beam-shaping optics or large, fabrication-intense arrays of polarization-sensitive unit cells, hindering tailored nanophotonic applications and on-chip integration. Here, we introduce radial quasi-bound states in the continuum (radial BICs) as a new class of radially distributed electromagnetic modes controlled by structural asymmetry in a ring of dielectric rod pair resonators. The radial BIC platform provides polarization-invariant and tunable high-Q resonances with strongly enhanced near fields in an ultracompact footprint as low as 2 µm2. We demonstrate radial BIC realizations in the visible for sensitive biomolecular detection and enhanced second-harmonic generation from monolayers of transition metal dichalcogenides, opening new perspectives for compact, spectrally selective, and polarization-invariant metadevices for multi-functional light-matter coupling, multiplexed sensing, and high-density on-chip photonics

    One-dimensional phase transitions in a two-dimensional optical lattice

    Full text link
    A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure
    corecore