411 research outputs found
The Density Matrix Renormalization Group applied to single-particle Quantum Mechanics
A simplified version of White's Density Matrix Renormalization Group (DMRG)
algorithm has been used to find the ground state of the free particle on a
tight-binding lattice. We generalize this algorithm to treat the tight-binding
particle in an arbitrary potential and to find excited states. We thereby solve
a discretized version of the single-particle Schr\"odinger equation, which we
can then take to the continuum limit. This allows us to obtain very accurate
results for the lowest energy levels of the quantum harmonic oscillator,
anharmonic oscillator and double-well potential. We compare the DMRG results
thus obtained with those achieved by other methods.Comment: REVTEX file, 21 pages, 3 Tables, 4 eps Figure
Density Matrices for a Chain of Oscillators
We consider chains with an optical phonon spectrum and study the reduced
density matrices which occur in density-matrix renormalization group (DMRG)
calculations. Both for one site and for half of the chain, these are found to
be exponentials of bosonic operators. Their spectra, which are correspondingly
exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure
Dynamical Correlation Functions using the Density Matrix Renormalization Group
The density matrix renormalization group (DMRG) method allows for very
precise calculations of ground state properties in low-dimensional strongly
correlated systems. We investigate two methods to expand the DMRG to
calculations of dynamical properties. In the Lanczos vector method the DMRG
basis is optimized to represent Lanczos vectors, which are then used to
calculate the spectra. This method is fast and relatively easy to implement,
but the accuracy at higher frequencies is limited. Alternatively, one can
optimize the basis to represent a correction vector for a particular frequency.
The correction vectors can be used to calculate the dynamical correlation
functions at these frequencies with high accuracy. By separately calculating
correction vectors at different frequencies, the dynamical correlation
functions can be interpolated and pieced together from these results. For
systems with open boundaries we discuss how to construct operators for specific
wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure
Superfluid, Mott-Insulator, and Mass-Density-Wave Phases in the One-Dimensional Extended Bose-Hubbard Model
We use the finite-size density-matrix-renormalization-group (FSDMRG) method
to obtain the phase diagram of the one-dimensional () extended
Bose-Hubbard model for density in the plane, where and
are, respectively, onsite and nearest-neighbor interactions. The phase diagram
comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density
Wave (MDW). For small values of and , we get a reentrant SF-MI-SF phase
transition. For intermediate values of interactions the SF phase is sandwiched
between MI and MDW phases with continuous SF-MI and SF-MDW transitions. We
show, by a detailed finite-size scaling analysis, that the MI-SF transition is
of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both KT and
two-dimensional-Ising characters. For large values of and we get a
direct, first-order, MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase
boundaries join at a bicritical point at (.Comment: 10 pages, 15 figure
Theoretische und experimentelle Untersuchungen zur zyklischen Thermoviskoplastizität
Im Rahmen dieser Arbeit wurde ein Viskoplastizitätsmodell nach Chaboche mit ausschließlich kinematischer Verfestigung untersucht. Hierbei wurden auch die Auswirkungen eines Temperaturgeschwindigkeitsterms in der kinematischen Verfestigung betrachtet. Am Werkstoff AISI 316L(N) wurden isotherme Versuche zur Bestimmung der Parameter des Modells sowie nichtisotherme Versuche zur Beurteilung der Möglichkeiten des Modells durchgeführt. Die Versuche haben gezeigt, daß sowohl der E - Modul als auch die Fließgrenze mit steigender Temperatur abnehmen. Der Werkstoff zeigt bei monotoner und bei zyklischer Belastung nennenswerte Verfestigung. Der Betrag der Spannungsrelaxation und somit die Viskosität des Werkstoffs bzw. die sich aufbauende Überspannung nimmt mit steigender Temperatur ab. Es zeigte sich, daß der Werkstoff eine der thermischen Zyklierung vorangehende Verformung mit zunehmender Lastspielzahl "vergißt". Die Gegenüberstellung von Versuch und Rechnung macht deutlich, daß die Modellantwort des verwendeten Viskoplastizitätsmodells als gute Näherung einzustufen ist. Dies gilt insbesondere während des ersten Lastwechsels. Zu höheren Lastspielzahlen hin wird die Differenz zwischen Versuch und Rechnung größer, da das Modell nicht in der Lage ist, die bei AISI 316L(N) auftretende zyklische Verfestigung nachzuvollziehen. In Bereichen, in denen der Betrag der Spannung und die Temperatur gleichzeitig zunehmen, kann es aufgrund der Temperaturabhängigkeit der Fließgrenze zu Unterschieden zwischen Versuch und Rechnung kommen
The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction
We study the one-dimensional Bose-Hubbard model using the Density-Matrix
Renormalization Group (DMRG).For the cases of on-site interactions and
additional nearest-neighbor interactions the phase boundaries of the
Mott-insulators and charge density wave phases are determined. We find a direct
phase transition between the charge density wave phase and the superfluid
phase, and no supersolid or normal phases. In the presence of nearest-neighbor
interaction the charge density wave phase is completely surrounded by a region
in which the effective interactions in the superfluid phase are repulsive. It
is known from Luttinger liquid theory that a single impurity causes the system
to be insulating if the effective interactions are repulsive, and that an even
bigger region of the superfluid phase is driven into a Bose-glass phase by any
finite quenched disorder. We determine the boundaries of both regions in the
phase diagram. The ac-conductivity in the superfluid phase in the attractive
and the repulsive region is calculated, and a big superfluid stiffness is found
in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure
Radial bound states in the continuum for polarization-invariant nanophotonics
All-dielectric nanophotonics underpinned by the physics of bound states in the continuum (BICs) have demonstrated breakthrough applications in nanoscale light manipulation, frequency conversion and optical sensing. Leading BIC implementations range from isolated nanoantennas with localized electromagnetic fields to symmetry-protected metasurfaces with controllable resonance quality (Q) factors. However, they either require structured light illumination with complex beam-shaping optics or large, fabrication-intense arrays of polarization-sensitive unit cells, hindering tailored nanophotonic applications and on-chip integration. Here, we introduce radial quasi-bound states in the continuum (radial BICs) as a new class of radially distributed electromagnetic modes controlled by structural asymmetry in a ring of dielectric rod pair resonators. The radial BIC platform provides polarization-invariant and tunable high-Q resonances with strongly enhanced near fields in an ultracompact footprint as low as 2 µm2. We demonstrate radial BIC realizations in the visible for sensitive biomolecular detection and enhanced second-harmonic generation from monolayers of transition metal dichalcogenides, opening new perspectives for compact, spectrally selective, and polarization-invariant metadevices for multi-functional light-matter coupling, multiplexed sensing, and high-density on-chip photonics
One-dimensional phase transitions in a two-dimensional optical lattice
A phase transition for bosonic atoms in a two-dimensional anisotropic optical
lattice is considered. If the tunnelling rates in two directions are different,
the system can undergo a transition between a two-dimensional superfluid and a
one-dimensional Mott insulating array of strongly coupled tubes. The connection
to other lattice models is exploited in order to better understand the phase
transition. Critical properties are obtained using quantum Monte Carlo
calculations. These critical properties are related to correlation properties
of the bosons and a criterion for commensurate filling is established.Comment: 14 pages, 8 figure
- …