183 research outputs found

    A Parameter Study of Classical Be Star Disk Models Constrained by Optical Interferometry

    Full text link
    We have computed theoretical models of circumstellar disks for the classical Be stars κ\kappa Dra, β\beta Psc, and υ\upsilon Cyg. Models were constructed using a non-LTE radiative transfer code developed by \citet{sig07} which incorporates a number of improvements over previous treatments of the disk thermal structure, including a realistic chemical composition. Our models are constrained by direct comparison with long baseline optical interferometric observations of the Hα\alpha emitting regions and by contemporaneous Hα\alpha line profiles. Detailed comparisons of our predictions with Hα\alpha interferometry and spectroscopy place very tight constraints on the density distributions for these circumstellar disks.Comment: 10 figures,28 pages, accepted by Ap

    The Synthesis and Characterization of LiFeAs and NaFeAs

    Full text link
    The newest homologous series of superconducting As-pnictides, LiFeAs (Li111) and NaFeAs (Na111) have been synthesized and investigated. Both crystallize with the layered tetragonal anti-PbFCl-type structure in P4/nmm space group. Polycrystalline samples and single-crystals of Li111 and Na111 display superconducting transitions at ~ 18 K and 12-25 K, respectively. No magnetic order has been found in either compound, although a weak magnetic background is clearly in evidence. The origin of the carriers and the stoichiometric compositions of Li111 and Na111 were explored.Comment: submitted for publication in Physica C special issue on Fe-pnictide

    New anti-perovskite-type Superconductor ZnNyNi3

    Full text link
    We have synthesized a new superconductor ZnNyNi3 with Tc ~3 K. The crystal structure has the same anti-perovskite-type such as MgCNi3 and CdCNi3. As far as we know, this is the third superconducting material in Ni-based anti-perovskite series. For this material, superconducting parameters, lower-critical field Hc1(0), upper-critical field Hc2(0), coherence length x(0), penetration depth l(0), and Gintzburg -Landau parameter k(0) have been experimentally determined.Comment: 13 pages, 3 figures, 1 tabl

    CHARA Array K'-band Measurements of the Angular Dimensions of Be Star Disks

    Get PDF
    We present the first K'-band, long-baseline interferometric observations of the northern Be stars gamma Cas, phi Per, zeta Tau, and kappa Dra. The measurements were made with multiple telescope pairs of the CHARA Array interferometer, and in every case the observations indicate that the circumstellar disks of the targets are resolved. We fit the interferometric visibilities with predictions from a simple disk model that assumes an isothermal gas in Keplerian rotation. We derive fits of the four model parameters (disk base density, radial density exponent, disk normal inclination, and position angle) for each of the targets. The resulting densities are in broad agreement with prior studies of the IR excess flux and the resulting orientations generally agree with those from interferometric H-alpha and continuum polarimetric observations. We find that the angular size of the K' disk emission is smaller than that determined for the H-alpha emission, and we argue that the difference is the result of a larger H-alpha opacity and the relatively larger neutral hydrogen fraction with increasing disk radius. All the targets are known binaries with faint companions, and we find that companions appear to influence the interferometric visibilities in the cases of phi Per and kappa Dra. We also present contemporaneous observations of the H-alpha, H-gamma, and Br-gamma emission lines. Synthetic model profiles of these lines that are based on the same disk inclination and radial density exponent as derived from the CHARA Array observations match the observed emission line strength if the disk base density is reduced by approximately 1.7 dex.Comment: ApJ in press (2007 Jan 1), 55 pages, 14 figure

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    c67, VI.1.4.1 Binary and ternary imides

    No full text
    corecore