545 research outputs found

    Crystal engineering using functionalized adamantane

    Full text link
    We performed a first principles investigation on the structural, electronic, and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zincblende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ\kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electro-mechanical systems

    Point defect interactions with extended defects in semiconductors

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe performed a theoretical investigation of the interaction of point defects (vacancy and self-interstitials) with an intrinsic stacking fault in silicon using ab initio total-energy calculations. Defects at the fault and in the crystalline environment display a different behavior, which is evidenced by changes in formation energy and electronic structure. The formation energies for the vacancy and the [110]-split interstitial are lower at the intrinsic stacking fault than those in the crystal, indicating that in nonequilibrium conditions, intrinsic stacking faults can act, together with other extended defects, as a sink for point defects, and also that in equilibrium conditions, there can be a higher concentration of such defects at the fault than that in bulk silicon. [S0163-1829(99)03631-0].We performed a theoretical investigation of the interaction of point defects (vacancy and self-interstitials) with an intrinsic stacking fault in silicon using ab initio total-energy calculations. Defects at the fault and in the crystalline environment display a different behavior, which is evidenced by changes in formation energy and electronic structure. The formation energies for the vacancy and the [110]-split interstitial are lower at the intrinsic stacking fault than those in the crystal, indicating that in nonequilibrium conditions, intrinsic stacking faults can act, together with other extended defects, as a sink for point defects, and also that in equilibrium conditions, there can be a higher concentration of such defects at the fault than that in bulk silicon.60747114714FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSem informaçãoSem informaçãoThe authors acknowledge partial support from the Brazilian funding agencies FAPESP and CNPq. Computer calculations were performed at the facilities of CENAPAD-SP

    A study of the Higgs and confining phases in Euclidean SU(2) Yang-Mills theories in 3d by taking into account the Gribov horizon

    Get PDF
    We study SU(2) three-dimensional Yang-Mills theories in presence of Higgs fields in the light of the Gribov phenomenon. By restricting the domain of integration in the functional integral to the first Gribov horizon, we are able to discuss a kind of transition between the Higgs and the confining phase in a semi-classical approximation. Both adjoint and fundamental representation for the Higgs field are considered, leading to a different phase structure.Comment: 12 pages. Version accepted for publication in the EPJ

    Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon

    Full text link
    We calculate the free energies of unstable stacking fault (USF) configurations on the glide and shuffle slip planes in silicon as a function of temperature, using the recently developed Environment Dependent Interatomic Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching method with appropriate periodic boundary conditions and restrictions to atomic motion that guarantee stability and include volume relaxation of the USF configurations perpendicular to the slip plane. Our MD results using the EDIP model agree fairly well with earlier first-principles estimates for the transition from shuffle to glide plane dominance as a function of temperature. We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.

    Comparison between classical potentials and ab initio for silicon under large shear

    Full text link
    The homogeneous shear of the {111} planes along the direction of bulk silicon has been investigated using ab initio techniques, to better understand the strain properties of both shuffle and glide set planes. Similar calculations have been done with three empirical potentials, Stillinger-Weber, Tersoff and EDIP, in order to find the one giving the best results under large shear strains. The generalized stacking fault energies have also been calculated with these potentials to complement this study. It turns out that the Stillinger-Weber potential better reproduces the ab initio results, for the smoothness and the amplitude of the energy variation as well as the localization of shear in the shuffle set

    Quasiharmonic elastic constants corrected for deviatoric thermal stresses

    Full text link
    The quasiharmonic approximation (QHA), in its simplest form also called the statically constrained (SC) QHA, has been shown to be a straightforward method to compute thermoelastic properties of crystals. Recently we showed that for non-cubic solids SC-QHA calculations develop deviatoric thermal stresses at high temperatures. Relaxation of these stresses leads to a series of corrections to the free energy that may be taken to any desired order, up to self-consistency. Here we show how to correct the elastic constants obtained using the SC-QHA. We exemplify the procedure by correcting to first order the elastic constants of MgSiO3_3-perovskite and MgSiO3_3-post-perovskite, the major phases of the Earth's lower mantle. We show that this first order correction is quite satisfactory for obtaining the aggregated elastic averages of these minerals and their velocities in the lower mantle. This type of correction is also shown to be applicable to experimental measurements of elastic constants in situations where deviatoric stresses can develop, such as in diamond anvil cells.Comment: 4 figures, 1 table, submitted to Phys. Rev. B, July 200
    corecore