26 research outputs found

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    13C-METHYL Formate in Orion-Kl Alma Observations and Spectroscopic Characterization

    No full text
    Determination of elemental isotopic ratios is valuable for understanding the chemical evolution of interstellar material. Until now the 12C/13C ratio has predominantly been measured in simple species such as CO, CN and H2CO and, becomes larger with increasing distance from the Galactic Center. We have investigated the carbon isotopic ratio for methyl formate HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3 addressing the issue whether the 12C/13C ratio is the same for both simple and large molecules. Using ALMA science verification observations of Orion-KL and the spectroscopic characterization of the complex H13COOCH3 and HCOO13CH3 species that we have performed, we have 1) confirmed the detection of the 13C-methyl formate species in Orion-KL and, 2) image for the first time their spatial distribution. I will present some of these results. In particular, our analysis shows that the 12C/13C isotope ratio in methyl formate toward the Compact Ridge and Hot Core-SW components that are associated with Orion-KL are, for both the 13C-methyl formate isotopologues, commensurate with the well-known 12C/13C ratio of the simple species CO. Our findings suggest that grain surface chemistry very likely prevails in the formation of methyl formate main and 13C isotopologues

    13C-METHYL Formate in Orion-Kl Alma Observations and Spectroscopic Characterization

    No full text
    International audienceDetermination of elemental isotopic ratios is valuable for understanding the chemical evolution of interstellar material. Until now the 12C/13C ratio has predominantly been measured in simple species such as CO, CN and H2CO and, becomes larger with increasing distance from the Galactic Center. We have investigated the carbon isotopic ratio for methyl formate HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3 addressing the issue whether the 12C/13C ratio is the same for both simple and large molecules. Using ALMA science verification observations of Orion-KL and the spectroscopic characterization of the complex H13COOCH3 and HCOO13CH3 species that we have performed, we have 1) confirmed the detection of the 13C-methyl formate species in Orion-KL and, 2) image for the first time their spatial distribution. I will present some of these results. In particular, our analysis shows that the 12C/13C isotope ratio in methyl formate toward the Compact Ridge and Hot Core-SW components that are associated with Orion-KL are, for both the 13C-methyl formate isotopologues, commensurate with the well-known 12C/13C ratio of the simple species CO. Our findings suggest that grain surface chemistry very likely prevails in the formation of methyl formate main and 13C isotopologues

    Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages.

    No full text
    Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared

    <i>Brevibacillus</i> phage SecTim467 genes harboring upstream conserved motifs are primarily involved in nucleotide metabolism/replication.

    No full text
    <p>FIMO [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref046" target="_blank">46</a>] was used to locate the conserved motif in the genome of SecTim467. This chart also shows that these motifs are located in inter-gene gaps upstream of DNA metabolism and RNA transcription genes. “N/A” indicates the gene downstream of the motif at that location had an unknown function. The motif is displayed at the bottom, with the bases of the highly conserved portions of the motif highlighted throughout the figure in red. In many cases, several genes appear immediately downstream of the conserved motif in what may be an operon. In these cases, more than one gene function is reported. Two of the discovered motif sequences are present in the reverse complement of the given coordinates and are denoted by their coordinate numbers colored in red. The word graph at the bottom of the figure is a proportional representation of instances of different nucleotides at each position in the motif that contribute to the overall consensus sequence.</p

    Osiris gp55 superimposed on the phage P22 c2 repressor shows similar N-terminal structure and suggests possible homodimerization prior to interaction with DNA.

    No full text
    <p>The predicted RaptorX [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref054" target="_blank">54</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref057" target="_blank">57</a>] structure for Osiris gp55 superimposed using STRAP [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref058" target="_blank">58</a>] on the phage P22 c2 repressor protein published by Watkins et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref052" target="_blank">52</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref085" target="_blank">85</a>] reveals high structural homology. The DNA binding domain as predicted by RaptorX [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref054" target="_blank">54</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156838#pone.0156838.ref057" target="_blank">57</a>] in Osiris gp55 is near the N-terminus, similar to the c2 repressor in phage P22. RaptorX was unable to accurately predict tertiary structure near the gp55 C-terminus.</p
    corecore