2,469 research outputs found

    Cost Analysis of Optimized Islanded Energy Systems in a Dispersed Air Base Conflict

    Get PDF
    The United States Air Force has implemented a dispersed air base strategy to enhance mission effectiveness for near-peer conflicts. Asset dispersal places many smaller bases across a wide geographic area, which increases resupply requirements and logistical complexity. Hybrid energy systems reduce resupply requirements through sustainable, off-grid energy production. This paper presents a novel hybrid energy renewable delivery system (HERDS) model capable of (1) selecting the optimal hybrid energy system design that meets demand at the lowest net present cost and (2) optimizing the delivery of the selected system using existing Air Force cargo aircraft. The novelty of the model’s capabilities is displayed using Clark Air Base, Philippines as a case study. The HERDS model selected an optimal configuration consisting of a 676-kW photovoltaic array, an 1846-kWh battery system, and a 200-kW generator. This hybrid energy system predicts a 54% reduction in cost and an 88% reduction in fuel usage, as compared to the baseline Air Force system. The HERDS model is expected to support planners in their ongoing efforts to construct cost-effective sites that minimize the transport and logistic requirements associated with remote installations. Additionally, the results of this paper may be appropriate for broader civilian applications

    Meeting Temporary Facility Energy Demand with Climate-Optimized Off-Grid Energy Systems

    Get PDF
    Remote and contingency operations, including military and disaster-relief activities, often require the use of temporary facilities powered by inefficient diesel generators that are expensive to operate and maintain. Site planners can reduce operating costs by increasing shelter insulation and augmenting generators with photovoltaic-battery hybrid energy systems, but they must select the optimal design configuration based on the region’s climate to meet the power demand at the lowest cost. To assist planners, this paper proposes an innovative, climate-optimized, hybrid energy system selection model capable of selecting the facility insulation type, solar array size, and battery backup system to minimize the annual operating cost. To demonstrate the model’s capability in various climates, model performance was evaluated for applications in southwest Asia and the Caribbean. For a facility in Southwest Asia, the model reduced fuel consumption by 93% and saved 271thousandcomparedtooperatingadieselgenerator.ThesimulatedfacilityintheCaribbeanresultedinmoresignificantsavings,decreasingfuelconsumptionby92271 thousand compared to operating a diesel generator. The simulated facility in the Caribbean resulted in more significant savings, decreasing fuel consumption by 92% and saving 291 thousand. This capability is expected to support planners of remote sites in their ongoing effort to minimize fuel supply requirements and annual operating costs of temporary facilities

    Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.

    Get PDF
    Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid-β peptide (Aβ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the Aβ42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred tγ-secretase modulatoro as γ-secretase modulators that inhibited the production of the Aβ42 peptide and to a lesser degree the Aβ40 peptide while concomitantly increasing the production of the carboxyl-truncated Aβ38 and Aβ37 peptides. These modulators potently lower Aβ42 levels without inhibiting the γ-secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ-secretase modulator (GSM), (S)-N-(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower Aβ42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce Aβ neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble Aβ42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials

    Development of a PNGase Rc column for online deglycosylation of complex glycoproteins during HDX-MS

    Get PDF
    Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from Rudaea cellulosilytica) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins. We show that HDX-MS with the PNGase Rc column enables efficient online removal of N-linked glycans and the determination of the HDX of glycosylated regions in several complex glycoproteins. Additionally, we use the PNGase Rc column to perform a comprehensive HDX-MS mapping of the binding epitope of a mAb to c-Met, a complex glycoprotein drug target. Importantly, the column retains high activity in the presence of common quench-buffer additives like TCEP and urea and performed consistent across 114 days of extensive use. Overall, our work shows that HDX-MS with the integrated PNGase Rc column can enable fast and efficient online deglycosylation at harsh quench conditions to provide comprehensive analysis of complex glycoproteins

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s1^{-1} and an ejecta mass of few ×105\times 10^{-5} M_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Cell-specific transcriptome changes in the hypothalamic arcuate nucleus in a mouse deoxycorticosterone acetate-salt model of hypertension

    Get PDF
    A common preclinical model of hypertension characterized by low circulating renin is the “deoxycorticosterone acetate (DOCA)-salt” model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types

    Skeletal Light-Scattering Accelerates Bleaching Response in Reef-Building Corals

    Get PDF
    Background At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as ‘microscopic’ reduced-scattering coefficient, μ′S,m), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Results Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ′S,m corals bleach at higher rate and severity than high-μ′S,m corals and the Symbiodinium associated with low-μ′S,m corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ′S,m corals. Conclusions While symbionts associated with low-μ′S,m corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ′S,m as one of the key determinants of differential bleaching response

    Datasets for the Reporting of Primary Tumour in Bone: Recommendations From the International Collaboration on Cancer Reporting (ICCR)

    Get PDF
    BACKGROUND AND OBJECTIVES: Bone tumours are relatively rare and, as a consequence, treatment in a centre with expertise is required. Current treatment guidelines also recommend review by a specialised pathologist. Here we report on international consensus-based datasets for the pathology reporting of biopsy and resection specimens of bone sarcomas. The datasets were produced under the auspices of the International Collaboration on Cancer Reporting (ICCR), a global alliance of major (inter-)national pathology and cancer organisations. METHODS AND RESULTS: According to the ICCR\u27s process for dataset development, an international expert panel consisting of pathologists, an oncologic orthopaedic surgeon, a medical oncologist, and a radiologist produced a set of core and noncore data items for biopsy and resection specimens based on a critical review and discussion of current evidence. All professionals involved were bone tumour experts affiliated with tertiary referral centres. Commentary was provided for each data item to explain the rationale for selecting it as a core or noncore element, its clinical relevance, and to highlight potential areas of disagreement or lack of evidence, in which case a consensus position was formulated. Following international public consultation, the documents were finalised and ratified, and the datasets, including a synoptic reporting guide, were published on the ICCR website. CONCLUSION: These first international datasets for bone sarcomas are intended to promote high-quality, standardised pathology reporting. Their widespread adoption will improve the consistency of reporting, facilitate multidisciplinary communication, and enhance comparability of data, all of which will help to improve management of bone sarcoma patients

    Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

    Get PDF
    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of \sim30 μ\muas (\sim3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of \sim4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of \sim3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
    corecore