24 research outputs found

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF
    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Pest categorisation of the Ralstonia solanacearum species complex

    No full text
    Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of the Ralstonia solanacearum species complex (RSSC), a distinguishable cosmopolitan group of bacterial plant pathogens (including R. solanacearum, Ralstonia pseudosolanacearum and twosubspecies of Ralstonia syzygii) of the family Burkholderiaceae. The RSSC causes bacterial wilt in solanaceous crops, such as potato, tomato and pepper, but can also cause wilts in other important food crops such as fruit banana, plantain banana and cassava. The pest survives in the soil, and a number ofweed species can also be infected by the pest, often asymptomatically. The RSSC is regulated in Council Directive 2000/29/EC (Annex IAII) (indicated by its former name R. solanacearum, as delimited by Yabuuchi et al.) as a harmful organism whose introduction into the EU is banned. In addition, Council Directive 1998/57/EC (amended by Commission Directive 2006/63/CE) concerns the measures to be taken within EU Member States (MS) against the RSSC to (a) detect it and determine its distribution, (b) prevent its occurrence and spread, and (c) control it with the aim of eradication. The pest is present in several EU MS, but in all cases with a restricted distribution and under official control. Newphylotypes of the RSSC could enter the EU primarily via host plants for planting (including seed tubers).The pest could establish in the EU, as climatic conditions are favourable, hosts are common and the pathogen has high adaptability. Spread is mainly via plants for planting. Substantial crop losses in the EU would occur in the presence of RSSC epidemics. The RSSC is regarded as one of the world’s most important phytopathogenic bacteria due to its broad geographical distribution, large host range, aggressiveness, genetic diversity and long persistence in soil and water. The list of hosts and commodities for which the pest is regulated is incomplete due to the high diversity of hosts and the lack of knowledge of the complete host range. Moreover, the comparative epidemiology of the different pathogen species has not yet been studied. The criteria assessed by the Panel for consideration of the RSSC as potential quarantine pest are met, while, for regulated non-quarantine pests, the criterion on the widespread presence in the EU is not met

    Pest categorisation of Clavibacter sepedonicus

    No full text
    Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Clavibacter sepedonicus, a well-defined and distinguishable bacterial plant pathogen of the family Microbacteriaceae. C. sepedonicus causes bacterial ring rot of potato and is reported from North America, Asia and Europe. The bacterium is mostly tuber transmitted, but it can also enter host plants through wounds or via contaminated equipment. C. sepedonicus is regulated in Council Directive2000/29/EC (Annex IAII, as Clavibacter michiganensis subsp. sepedonicus) as a harmful organism whose introduction into the EU is banned. In addition, Council Directive 1993/85/EEC concerns the measures to be taken within EU Member States (MS) against C. sepedonicus to (a) detect it and determine its distribution, (b) prevent its occurrence and spread, and (c) control it with the aim of eradication. The pest is present in several EU MS, but in all cases with a restricted distribution and under official control. C. sepedonicus could enter the EU and spread primarily via host plants for planting (i.e. potato tubers).The pest could establish in the EU, as the main host (potato) is commonly grown and climatic conditions are favourable. Direct potato losses following infection by C. sepedonicus can be substantial and are due to the destruction of the vascular tissue, wilting of the plant and rotting of the tubers. Infected hosts canremain asymptomatic. The main knowledge gaps are the geographic distribution of the pest and the host range. The criteria assessed by the Panel for consideration of C. sepedonicus as a potential quarantine pest are met, while, for regulated non-quarantine pests, the criterion on the widespread presence in the EU is not met
    corecore