4 research outputs found

    Maximum Power Point Tracking Charge Controller for Standalone PV System

    Get PDF
    The depletion of conventional energy sources and global warming has raised worldwide awareness on the usage of renewable energy sources particularly solar photovoltaic (PV). Renewable energy sources are non-polluting sources which can meet energy demands without causing any environmental issues. For standalone PV systems, a low conversion efficiency of the solar panel and high installation cost due to storage elements are the two primary constraints that limit the widespread use of this system. As the size of the system increases, the demand for a highly efficient tracking and charging system is very crucial. Direct charging of battery with PV module will results in loss of capacity or premature battery degradation. Furthermore, most of the available energy generated by the PV module or array will be wasted if proper tracking technique is not employed. As a result, more PV panels need to be installed to provide the same output power capacity. This paper presents selection, design and simulation of maximum power point tracker (MPPT) and battery charge controller for standalone Photovoltaic (PV) system. Contributions are made in several aspects of the whole system, including selection of suitable converter, converter design, system simulation, and MPPT algorithm. The proposed system utilizes direct duty cycle technique thus simplifying its control structure. MPPT algorithm based on scanning approach has been applied by sweeping the duty cycle throughout the I-V curve to ensure continuous tracking of the maximum power irrespective of any environmental circumstances. For energy storage, lead acid battery is employed in this work. MATLAB/Simulink® was utilized for simulation studies. Results show that the propose strategy can track the MPPs and charge the battery effectively

    Fruits and vegetables preference among university students towards developing healthy food innovation products

    Get PDF
    No AbstractKeywords: fruits; vegetables; preference; university student

    Study on dielectric and magnetic properties of WCNTs/polyester composites

    No full text
    This paper is to study the dielectric properties, magnetic properties, and dielectric conductivity of Multi-walled carbon nanotubes (MWCNTs) and polyester (PE) composites. The composites with different amount of MWCNTs (5-15%) have been studied in the Ku-Band range (12.4-18 GHz). The rectangular waveguide (WR-62) was used to measure the dielectric properties and magnetic properties of the samples. The results show the dielectric properties and conductivity of MWCNTs/PE composites is increasing with the MWCNTs filler increases. The real part of dielectric properties values increase from 5.5 to 26.6 with increasing the MWCNTs loading from 5 % to 15 %. The increasing of MWCNTs filler in the MWCNTs/PE composites does not effects on magnetic properties, the real part and imaginary part of magnetic properties are approximate to 1 and 0. The highest conductivity of 15 % MWCNTs loading is reach to 11.02 (S/m) at 18 GHz. Keywords: composites, dielectric properties, magnetic properties, conductivity
    corecore