12 research outputs found

    MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymorphisms of DNA repair enzymes in the base excision repair (BER) pathway, may lead to genetic instability and lung cancer carcinogenesis. We investigated the interactions among the gene polymorphisms in DNA repair genes and lung cancer.</p> <p>Methods</p> <p>We analyzed associations among <it>OGG1 </it>Ser326Cys and <it>MUTYH </it>Gln324His gene polymorphisms in relation to lung cancer risk using PCR-RFLP. The study involved 108 lung cancer patients and 121 non-cancer controls divided into non-smokers, smokers according to pack-years smoked in Japanese.</p> <p>Results</p> <p>The results showed that the <it>MUTYH His/His </it>genotype compared with <it>Gln/Gln </it>genotype showed an increased risk for lung cancer (adjusted odds ratio [OR] 3.03, confidence interval [95%CI], 1.31–7.00, p = 0.010), whereas there was no significant increase for the <it>Gln/His </it>genotype (adjusted OR 1.35, 95%CI 0.70–2.61, p = 0.376). The <it>MUTYH His/His </it>genotype was at a borderline increased risk for both adenocarcinoma and squamous cell carcinoma (adjusted OR 2.50, 95%CI 0.95–6.62, p = 0.065 for adenocarcinoma; adjusted OR 3.20, 95%CI 0.89–11.49, p = 0.075 for squamous cell carcinoma, respectively). However, the <it>OGG1 Ser/Cys </it>or <it>Cys/Cys </it>genotypes compared with the <it>Ser/Ser </it>genotype did not have significantly increased risk for lung cancer, containing either adenocarcinoma or squamous cell carcinoma. The joint effect of tobacco exposure and the <it>MUTYH His/His </it>genotype compared with the <it>Gln/Gln </it>genotype showed a significant association with lung cancer risk in smokers, and there was not significantly increased in non-smokers (adjusted OR 3.82, 95%CI 1.22–12.00, p = 0.022 for smokers; adjusted OR 2.60, 95%CI 0.60–11.25, p = 0.200 for non-smokers, respectively). The effect of tobacco exposure and the <it>OGG1 </it>Ser326Cys showed also no significant risk for lung cancer.</p> <p>Conclusion</p> <p>Our findings suggest that the <it>MUTYH </it>Gln324His polymorphism appear to play an important role in modifying the risk for lung cancer in the Japanese population.</p

    Genome defence in hypomethylated developmental contexts

    Get PDF
    Retrotransposons constitute around 40% of the mammalian genome and their aberrant activation can have wide ranging detrimental consequences, both throughout development and into somatic lineages. DNA methylation is one of the major epigenetic mechanisms in mammals, and is essential in repressing retrotransposons throughout mammalian development. Yet during normal mouse embryonic development some cell lineages become extensively DNA hypomethylated and it is not clear how these cells maintain retrotransposon silencing in a globally hypomethylated genomic context. In this thesis I determine that hypomethylation in multiple contexts results in the consistent activation of only one gene in the mouse genome - Tex19.1. Thus if a generic compensatory mechanism for loss of DNA methylation exists in mice, it must function through this gene. Tex19.1-/- mice de-repress retrotransposons in the hypomethylated component of the placenta and in the mouse germline, and have developmental defects in these tissues. In this thesis I examine the mechanism of TEX19.1 mediated genome defence and the developmental consequences upon its removal. I show that TEX19.1 functions in repressing retrotransposons, at least in part, through physically interacting with the transcriptional co-repressor, KAP1. Tex19.1-/- ES cells have reduced levels of KAP1 bound retrotransposon chromatin and reduced levels of the repressive H3K9me3 modification at these loci. Furthermore, these subsets of retrotransposon loci are de-repressed in Tex19.1-/- placentas. Thus, my data indicates that mouse cells respond to hypomethylation by activating expression of Tex19.1, which in turn augments compensatory, repressive histone modifications at retrotransposon sequences, thereby helping developmentally hypomethylated cells to maintain genome stability. I next aimed to further elucidate the role of Tex19.1 in the developing hypomethylated placenta. I determine that Tex19.1-/- placental defects precede intrauterine growth restriction of the embryo and that alterations in mRNA abundance in E12.5 Tex19.1-/- placentas is likely in part due to genic transcriptional changes. De-repression of LINE- 1 is evident in these placentas and elements of the de-repressed subfamily are associated with significantly downregulated genes. If retrotransposon de-repression is contributing to developmental defects by interfering with gene expression remains to be determined, however I identify a further possible mechanism leading to placental developmental defects. I determine that Tex19.1-/- placentas have an increased innate immune response and I propose that this is contributing to the developmental defects observed. Developmental defects and retrotransposon de-repression are also observed in spermatogenesis in Tex19.1-/- testes, the molecular basis for which is unclear. I therefore investigate the possibility that the TEX19.1 interacting partners, the E3 ubiquitin ligase proteins, may be contributing to the phenotypes observed in Tex19.1- /- testes. I show that repression of MMERVK10C in the testes is dependent on UBR2, alongside TEX19.1. Furthermore, I have identified a novel role for the TEX19.1 interacting partner, UBR5, in spermatogenesis, whose roles are distinct from those of TEX19.1. The work carried out during the course of this thesis provides mechanistic insights into TEX19.1 mediated genome defence and highlights the importance of protecting the genome from aberrant retrotransposon expression

    XRCC3 Gene Polymorphism Is Associated with Survival in Japanese Lung Cancer Patients

    Get PDF
    We focused on OGG1 Ser326Cys, MUTYH Gln324His, APEX1 Asp148Glu, XRCC1 Arg399Gln, and XRCC3 Thr241Met and examined the relationship between the different genotypes and survival of Japanese lung cancer patients. A total of 99 Japanese lung cancer patients were recruited into our study. Clinical data were collected, and genotypes of the target genes were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Survival analysis to verify the impact of these gene polymorphisms on the clinical outcome of lung cancer showed that lung squamous cell carcinoma patients with the Thr/Met genotype at XRCC3 had a significantly shorter survival time than those with the Thr/Thr genotype (13 months versus 48 months; log-rank test, p &amp;lt; 0.0001). Cox regression analysis showed that the carriers of XRCC3 genotypes were at a significantly higher risk [adjusted hazard ratio (HR) = 9.35, 95% confidence interval (CI) = 2.52&amp;#8211;34.68, p = 0.001; adjusted HR = 9.05, 95% CI = 1.89&amp;#8211;44.39, p = 0.006]. Our results suggest that XRCC3 Thr241Met may act as a favorable prognostic indicator for lung squamous cell carcinoma patients.&amp;#160

    Gene Expression Profiles Induced by a Novel Selective Peroxisome Proliferator-Activated Receptor α Modulator (SPPARMα) Pemafibrate

    No full text
    Pemafibrate is the first clinically-available selective peroxisome proliferator-activated receptor &alpha; modulator (SPPARM&alpha;) that has been shown to effectively improve hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals that the activation of PPAR&alpha; by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation, respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that PPAR&alpha; plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial effects in patients with atherogenic dyslipidemia and diabetic microvascular complications

    Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression

    No full text
    Summary: Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. : Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients. Keywords: epigenetics, extracellular low pH, sterol regulatory element-binding protein 2, acyl-CoA synthetase short-chain family member 2, cancer metabolism, tumor microenvironment, nutrient starvation, hypoxia, lacat

    Selective PPAR&alpha; Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis

    No full text
    Ballooning degeneration of hepatocytes is a major distinguishing histological feature of non-alcoholic steatosis (NASH) progression that can lead to cirrhosis and hepatocellular carcinoma (HCC). In this study, we evaluated the effect of the selective PPAR&alpha; modulator (SPPARM&alpha;) pemafibrate (Pema) and sodium-glucose cotransporter 2 (SGLT2) inhibitor tofogliflozin (Tofo) combination treatment on pathological progression in the liver of a mouse model of NASH (STAM) at two time points (onset of NASH progression and HCC survival). At both time points, the Pema and Tofo combination treatment significantly alleviated hyperglycemia and hypertriglyceridemia. The combination treatment significantly reduced ballooning degeneration of hepatocytes. RNA-seq analysis suggested that Pema and Tofo combination treatment resulted in an increase in glyceroneogenesis, triglyceride (TG) uptake, lipolysis and liberated fatty acids re-esterification into TG, lipid droplet (LD) formation, and Cidea/Cidec ratio along with an increased number and reduced size and area of LDs. In addition, combination treatment reduced expression levels of endoplasmic reticulum stress-related genes (Ire1a, Grp78, Xbp1, and Phlda3). Pema and Tofo treatment significantly improved survival rates and reduced the number of tumors in the liver compared to the NASH control group. These results suggest that SPPARM&alpha; and SGLT2 inhibitor combination therapy has therapeutic potential to prevent NASH-HCC progression

    Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors

    No full text
    Ribosome biogenesis is an energetically expensive program that is dictated by nutrient availability. Here we report that nutrient deprivation severely impairs precursor ribosomal RNA (pre-rRNA) processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, pre-rRNAs stored under starvation are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient stress leads to perturbed ribosome assembly upon nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine is dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which is in turn dependent on Raf/MEK/ERK signaling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that tumor cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore