224 research outputs found

    Tuning edge state localization in graphene nanoribbons by in-plane bending

    Full text link
    The electronic properties of graphene are influenced by both geometric confinement and strain. We study the electronic structure of in-plane bent graphene nanoribbons, systems where confinement and strain are combined. To understand its electronic properties, we develop a tight-binding model that has a small computational cost and is based on exponentially decaying hopping and overlap parameters. Using this model, we show that the edge states in zigzag graphene nanoribbons are sensitive to bending and develop an effective dispersion that can be described by a one-dimensional atomic chain model. Because the velocity of the electrons at the edge is proportional to the slope of the dispersion, the edge states become gradually delocalized upon increasing the strength of bending.Comment: 11 pages, 8 figure

    Topolectric circuits: Theory and construction

    Get PDF
    We highlight a general theory to engineer arbitrary Hermitian tight-binding lattice models in electrical LC circuits, where the lattice sites are replaced by the electrical nodes, connected to its neighbors and to the ground by capacitors and inductors. In particular, by supplementing each node with n subnodes, where the phases of the current and voltage are the n distinct roots of unity, one can in principle realize arbitrary hopping amplitude between the sites or nodes via the shift capacitor coupling between them. This general principle is then implemented to construct a plethora of topological models in electrical circuits, topolectric circuits, where the robust zero-energy topological boundary modes manifest through a large boundary impedance, when the circuit is tuned to the resonance frequency. The simplicity of our circuit constructions is based on the fact that the existence of the boundary modes relies only on the Clifford algebra of the corresponding Hermitian matrices entering the Hamiltonian and not on their particular representation. This in turn enables us to implement a wide class of topological models through rather simple topolectric circuits with nodes consisting of only two subnodes. We anchor these outcomes from the numerical computation of the on-resonance impedance in circuit realizations of first-order (m = 1), such as Chern and quantum spin Hall insulators, and second- (m = 2) and third- (m = 3) order topological insulators in different dimensions, featuring sharp localization on boundaries of codimensionality d(c) = m. Finally, we subscribe to the stacked topolectric circuit construction to engineer three-dimensional Weyl, nodal-loop, quadrupolar Dirac, and Weyl semimetals, respectively, displaying surface- and hinge-localized impedance

    Magnetic susceptibility anisotropies in a two-dimensional quantum Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions

    Full text link
    The magnetic and thermodynamic properties of the two-dimensional quantum Heisenberg antiferromagnet that incorporates both a Dzyaloshinskii-Moriya and pseudo-dipolar interactions are studied within the framework of a generalized nonlinear sigma model (NLSM). We calculate the static uniform susceptibility and sublattice magnetization as a function of temperature and we show that: i) the magnetic-response is anisotropic and differs qualitatively from the expected behavior of a conventional easy-axis QHAF; ii) the Neel second-order phase transition becomes a crossover, for a magnetic field B perpendicular to the CuO(2) layers. We provide a simple and clear explanation for all the recently reported unusual magnetic anisotropies in the low-field susceptibility of La(2)CuO(4), L. N. Lavrov et al., Phys. Rev. Lett. 87, 017007 (2001), and we demonstrate explicitly why La(2)CuO(4) can not be classified as an ordinary easy-axis antiferromagnet.Comment: 6 pages, 3 figures, Revtex4, accepted for publication in Phys. Rev.

    Global Phase Diagram of a Dirty Weyl Liquid and Emergent Superuniversality

    Get PDF
    Pursuing complementary field-theoretic and numerical methods, we here paint the global phase diagram of a three-dimensional dirty Weyl system. The generalized Harris criterion, augmented by a perturbative renormalization-group analysis shows that weak disorder is an irrelevant perturbation at the Weyl semimetal (WSM)-insulator quantum-critical point. But, a metallic phase sets in through a quantum phase transition (QPT) at strong disorder across a multicritical point. The field-theoretic predictions for the correlation length exponent v = 2 and dynamic scaling exponent z = 5/4 at this multicritical point are in good agreement with the ones extracted numerically, yielding v = 1.98 +/- 0.10 and z = 1.26 +/- 0.05, from the scaling of the average density of states (DOS). Deep inside the WSM phase, generic disorder is also an irrelevant perturbation, while a metallic phase appears at strong disorder through a QPT. We here demonstrate that in the presence of generic but strong disorder, the WSM-metal QPT is ultimately always characterized by the exponents v = 1 and z = 3/2 (to one-loop order), originating from intranode or chiral-symmetric (e.g., regular and axial potential) disorder. We here anchor such emergent chiral super-universality through complementary renormalization-group calculations, controlled via. expansions, and numerical analysis of average DOS across WSM-metal QPT. In addition, we also discuss a subsequent QPT (at even stronger disorder) of a Weyl metal into an Anderson insulator by numerically computing the typical DOS at zero energy. The scaling behavior of various physical observables, such as residue of quasiparticle pole, dynamic conductivity, specific heat, Gruneisen ratio, inside various phases as well as across various QPTs in the global phase diagram of a dirty Weyl liquid, are discussed

    Higher-order topological insulators in amorphous solids

    Get PDF
    We identify the possibility of realizing higher order topological (HOT) phases in noncrystalline or amorphous materials. Starting from two- and three-dimensional crystalline HOT insulators, accommodating topological corner states, we gradually enhance structural randomness in the system. Within a parameter regime, as long as amorphousness is confined by an outer crystalline boundary, the system continues to host corner states, yielding amorphous HOT insulators. However, as structural disorder percolates to the edges, corner states start to dissolve into amorphous bulk, and ultimately the system becomes a trivial insulator when amorphousness plagues the entire system. These outcomes are further substantiated by computing the quadrupolar (octupolar) moment in two (three) dimensions. Therefore, HOT phases can be realized in amorphous solids, when wrapped by a thin (lithographically grown, for example) crystalline layer. Our findings suggest that crystalline topological phases can be realized even in the absence of local crystalline symmetry

    Dynamics of topological defects in a spiral: a scenario for the spin-glass phase of cuprates

    Get PDF
    We propose that the dissipative dynamics of topological defects in a spiral state is responsible for the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method, we show that topological defects are coupled to a bath of magnetic excitations. By integrating out the bath degrees of freedom, we find that the dynamical properties of the topological defects are dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an anisotropy and linear temperature dependence in agreement with experimental data.Comment: 4 pages, as publishe
    • …
    corecore