17 research outputs found

    GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation

    Get PDF
    PurposeThe purpose of this review is to summarize current knowledge of detailed biochemical evidence for the role of γ-aminobutyric acid type A receptors (GABA(A)-Rs) in the mechanisms of general anesthesia.Principal findingsWith the knowledge that all general anesthetics positively modulate GABA(A)-R-mediated inhibitory transmission, site-directed mutagenesis comparing sequences of GABA(A)-R subunits of varying sensitivity led to identification of amino acid residues in the transmembrane domain that are critical for the drug actions in vitro. Using a photo incorporable analogue of the general anesthetic, R(+)etomidate, we identified two transmembrane amino acids that were affinity labelled in purified bovine brain GABA(A)-R. Homology protein structural modelling positions these two residues, αM1-11' and βM3-4', close to each other in a single type of intersubunit etomidate binding pocket at the β/α interface. This position would be appropriate for modulation of agonist channel gating. Overall, available information suggests that these two etomidate binding residues are allosterically coupled to sites of action of steroids, barbiturates, volatile agents, and propofol, but not alcohols. Residue α/βM2-15' is probably not a binding site but allosterically coupled to action of volatile agents, alcohols, and intravenous agents, and α/βM1-(-2') is coupled to action of intravenous agents.ConclusionsEstablishment of a coherent and consistent structural model of the GABA(A)-R lends support to the conclusion that general anesthetics can modulate function by binding to appropriate domains on the protein. Genetic engineering of mice with mutation in some of these GABA(A)-R residues are insensitive to general anesthetics in vivo, suggesting that further analysis of these domains could lead to development of more potent and specific drugs

    Animal Biology

    No full text
    x,294 hal,;ill,;27 c

    Haematological and immunological 'metamorphosis' in neotenous urodeles

    No full text

    Book reviews

    No full text

    Dendritic Cells: Key to Fetal Tolerance?1

    No full text
    Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein
    corecore