607 research outputs found

    The ERE of the "Red Rectangle" revisited

    Full text link
    We present in this paper high signal-to-noise long-slit optical spectra of the Extended Red Emission (ERE) in the "Red Rectangle" (RR) nebula. These spectra, obtained at different positions in the nebula, reveal an extremely complex emission pattern on top of the broad ERE continuum. It is well known that three features converge at large distance from the central object, in wavelength and profile to the diffuse interstellar bands (DIBs) at 5797, 5849.8 and 6614 ang., (e.g. Sarre et al., 1995). In this paper we give a detailed inventory of all spectral subfeatures observed in the 5550--6850 ang. spectral range. Thanks to our high S/N spectra, we propose 5 new features in the RR that can be associated with DIBs. For the 5550--6200 ang. spectral range our slit position was on top of the NE spike of the X shaped nebula. A detailed description of the spatial profile-changes is given of the strongest features revealing that even far out in the nebula at 24 arcsec from the central star, there remains a small shift in wavelength of 1 respectively 2 ang between the ERE subfeatures and the DIB wavelengths of 5797.11 and 5849.78 ang.Comment: 8 pages, 9 figures accepted by Astronomy and Astrophysic

    Strong dust processing in circumstellar discs around 6 RV Tauri stars. Are dusty RV Tauri stars all binaries?

    Full text link
    We present extended Spectral Energy Distributions (SEDs) of seven classical RV Tauri stars, using newly obtained submillimetre continuum measurements and Geneva optical photometry supplemented with literature data. The broad-band SEDs show a large IR excess with a black-body slope at long wavelengths in six of the seven stars, R Sct being the noticeable exception. This long wavelength slope is best explained assuming the presence of a dust component of large grains in the circumstellar material. We show that the most likely distribution of the circumstellar dust around the six systems is that the dust resides in a disc. Moreover, very small outflow velocities are needed to explain the presence of dust near the sublimation temperature and we speculate that the discs are Keplerian. The structure and evolution of these compact discs are as yet not understood but a likely prerequisite for their formation is that the dusty RV Tauri stars are binaries.Comment: 10 pages, will be published in A&

    A Possible Massive Asteroid Belt Around zeta Lep

    Full text link
    We have used the Keck I telescope to image at 11.7 microns and 17.9 microns the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from the Sun with an infrared excess. The excess is at most marginally resolved at 17.9 microns. The dust distance from the star is probably less than or equal to 6 AU, although some dust may extend to 9 AU. The mass of observed dust is \~10^22 g. Since the lifetime of dust particles is about 10,000 years because of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ~300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system.Comment: 12 pages, 3 figures, ApJL in pres

    The Low Velocity Wind from the Circumstellar Matter Around the B9V Star sigma Herculis

    Full text link
    We have obtained FUSE spectra of sigma Her, a nearby binary system, with a main sequence primary, that has a Vega-like infrared excess. We observe absorption in the excited fine structure lines C II* at 1037 A, N II* at 1085 A, and N II** at 1086 A that are blueshifted by as much as ~30 km/sec with respect to the star. Since these features are considerably narrower than the stellar lines and broader than interstellar features, the C II and N II are circumstellar. We suggest that there is a radiatively driven wind, arising from the circumstellar matter, rather than accretion as occurs around beta Pic, because of sigma Her's high luminosity. Assuming that the gas is liberated by collisions between parent bodies at 20 AU, the approximate distance at which blackbody grains are in radiative equilibrium with the star and at which 3-body orbits become unstable, we infer dM/dt ~ 6 * 10^-12 M_{sun}/yr. This wind depletes the minimum mass of parent bodies in less than the estimated age of the system.Comment: 6 pages, 3 figures, ApJ in pres

    Penggunaan Gel Lidah Buaya (Aloe Vera) sebagai Koagulan Alami dalam Penjernihan Air Sumur di Desa Sausu Tambu Kecamatan Sausu

    Full text link
    Research on the use of aloe vera gel (aloe vera) as a natural coagulant in water purification village wells Sausu Tambu has been done. This study aims to determine whether aloe vera gel can be used as a natural coagulant and determine the optimum ratio of aloe vera gel in water (V/V) which is used in the purification of water wells in the village Sausu Tambu. Research was conducted on the water sample preparation, natural production of aloe vera gel, water treatment and analysis of water quality parameters, namely turbidity, hardness, color, pH and temperature. The results showed that aloe vera gel can be used as a coagulant to purify the water with an optimum ratio of 0.3 mL aloe vera gel in 500 mL water sample. Aloe vera gel can reduce 72.22% of turbidity, 63.48% hardness, 68.62% color with a pH of 5.5 and a temperature of 30 oC. It can be concluded that the aloe vera gel has the ability as a coagulant to purify water

    The Link Between Planetary Systems, Dusty White Dwarfs, and Metal Polluted White Dwarfs

    Full text link
    It has long been suspected that metal polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper we demonstrate that mass loss from a central star during post main sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the Solar System show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.Comment: 26 pages, 8 figures, accepted to Ap

    Spectral modeling of gaseous metal disks around DAZ white dwarfs

    Full text link
    We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.Comment: Proceedings, 16th European White Dwarf Workshop, Barcelona, 200

    Where Are The M Dwarf Disks Older Than 10 Million Years?

    Full text link
    We present 11.7-micron observations of nine late-type dwarfs obtained at the Keck I 10-meter telescope in December 2002 and April 2003. Our targets were selected for their youth or apparent IRAS 12-micron excess. For all nine sources, excess infrared emission is not detected. We find that stellar wind drag can dominate the circumstellar grain removal and plausibly explain the dearth of M Dwarf systems older than 10 Myr with currently detected infrared excesses. We predict M dwarfs possess fractional infrared excess on the order of L_{IR}/L_{*}\sim10^{-6} and this may be detectable with future efforts.Comment: 24 pages, 2 figures, accepted to Ap

    Infrared Space Observatory Polarimetric Imaging of the Egg Nebula (RAFGL 2688)

    Get PDF
    We present polarimetric imaging of the protoplanetary nebula RAFGL 2688 obtained at 4.5 microns with the Infrared Space Observatory (ISO). We have deconvolved the images to remove the signature of the point spread function of the ISO telescope, to the extent possible. The deconvolved 4.5 micron image and polarimetric map reveal a bright point source with faint, surrounding reflection nebulosity. The reflection nebula is brightest to the north-northeast, in agreement with previous ground- and space-based infrared imaging. Comparison with previous near-infrared polarimetric imaging suggests that the polarization of starlight induced by the dust grains in RAFGL 2688 is more or less independent of wavelength between 2 microns and 4.5 microns. This, in turn, indicates that scattering dominates over thermal emission at wavelengths as long as ~5 microns, and that the dust grains have characteristic radii < 1 micron.Comment: 27 pages, 9 figures; to appear in the Astronomical Journal, May 2002 issu

    The Mid-Infrared Emitting Dust Around AB Aur

    Full text link
    Using the Keck I telescope, we have obtained 11.7 micron and 18.7 micron images of the circumstellar dust emission from AB Aur, a Herbig Ae star. We find that AB Aur is probably resolved at 18.7 micron with an angular diameter of 1.2" at a surface brightness of 3.5 Jy/arcsec^2. Most of the dust mass detected at millimeter wavelengths does not contribute to the 18.7 micron emission, which is plausibly explained if the system possesses a relatively cold, massive disk. We find that models with an optically thick, geometrically thin disk, surrounded by an optically thin spherical envelope fit the data somewhat better than flared disk models.Comment: ApJ in press, 4 color figure
    • …
    corecore