21 research outputs found

    Unique Fine Morphology of Mouthparts in Haematoloecha nigrorufa (Stål) (Hemiptera: Reduviidae) Adapted to Millipede Feeding

    Get PDF
    Millipede assassin bugs are a diverse group of specialized millipede predators. However, the feeding behavior of Ectrichodiinae remains poorly known, especially how the mouthpart structures relate to various functions in feeding. In this study, fine morphology of the mouthparts and feeding performance of Haematoloecha nigrorufa (Stål, 1867) was observed and described in detail for the first time. The triangular labrum is divided by a conspicuous transverse membrane into a strongly sclerotized basilabrum and a less sclerotized distilabrum. Fifteen types of sensilla are distributed on the mouthparts. Each mandibular stylet has an expanded spatulate apex and about 150 approximately transverse ridges on the external middle side; these help in penetrating the ventral trunk area and the intersegmental membranes of millipede prey. The right maxilla is tapered. On the internal surface are a row dorsal short bristles near the apex and a row of ventral bristles preapically. A longitudinal row of long lamellate structures extend proximate for a considerable distance, lie entirely within the food canal, and bear several short spines and short bristles. There is no obvious di erence between males and females in the distribution, number, and types of sensilla on mouthparts. The adult feeding process involves several steps, including searching and capturing prey, paralyzing prey, a resting phase, and a feeding phase. The evolution of the mouthpart morphology and the putative functional significance of their sensilla are discussed, providing insight into the structure and function of the mouthparts adapted for millipede feeding

    Fruitful Decades for Canthin-6-ones from 1952 to 2015:Biosynthesis, Chemistry, and Biological Activities

    Get PDF
    In this review, more than 60 natural canthin-6-one alkaloids and their structures are considered. The biosynthesis, efficient and classic synthetic approaches, and biological activities of canthin-6-one alkaloids, from 1952 to 2015, are discussed. From an analysis of their structural properties and an investigation of the literature, possible future trends for canthin-6-one alkaloids are proposed. The information reported will be helpful in future research on canthin-6-one alkaloids

    Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression

    Get PDF
    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa

    Date for mitogenome-based phylogenies of leafhoppers

    No full text
    matrices, character data, computer codes, treefil

    Synthesis and In Vitro Antitumor Activity of Novel Bivalent β-Carboline-3-carboxylic Acid Derivatives with DNA as a Potential Target

    No full text
    A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation

    Nomograms for Predicting Disease-Free Survival Based on Core Needle Biopsy and Surgical Specimens in Female Breast Cancer Patients with Non-Pathological Complete Response to Neoadjuvant Chemotherapy

    No full text
    Purpose: While a pathologic complete response (pCR) is regarded as a surrogate endpoint for positive outcomes in breast cancer (BC) patients receiving neoadjuvant chemotherapy (NAC), forecasting the prognosis of non-pCR patients is still an open issue. This study aimed to create and evaluate nomogram models for estimating the likelihood of disease-free survival (DFS) for non-pCR patients. Methods: A retrospective analysis of 607 non-pCR BC patients was conducted (2012–2018). After converting continuous variables to categorical variables, variables entering the model were progressively identified by univariate and multivariate Cox regression analyses, and then pre-NAC and post-NAC nomogram models were developed. Regarding their discrimination, accuracy, and clinical value, the performance of the models was evaluated by internal and external validation. Two risk assessments were performed for each patient based on two models; patients were separated into different risk groups based on the calculated cut-off values for each model, including low-risk (assessed by the pre-NAC model) to low-risk (assessed by the post-NAC model), high-risk to low-risk, low-risk to high-risk, and high-risk to high-risk groups. The DFS of different groups was assessed using the Kaplan–Meier method. Results: Both pre-NAC and post-NAC nomogram models were built with clinical nodal (cN) status and estrogen receptor (ER), Ki67, and p53 status (all p < 0.05), showing good discrimination and calibration in both internal and external validation. We also assessed the performance of the two models in four subtypes, with the triple-negative subtype showing the best prediction. Patients in the high-risk to high-risk subgroup have significantly poorer survival rates (p < 0.0001). Conclusion: Two robust and effective nomograms were developed to personalize the prediction of DFS in non-pCR BC patients treated with NAC
    corecore