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Abstract: In this review, more than 60 natural canthin-6-one alkaloids and their structures are
considered. The biosynthesis, efficient and classic synthetic approaches, and biological activities
of canthin-6-one alkaloids, from 1952 to 2015, are discussed. From an analysis of their structural
properties and an investigation of the literature, possible future trends for canthin-6-one alkaloids are
proposed. The information reported will be helpful in future research on canthin-6-one alkaloids.
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1. Introduction

The canthin-6-one alkaloids, a subclass of β-carboline alkaloids with an additional D ring, have
been isolated from various plants, principally those in the Rutaceae [1–8] and Simaroubaceae [9–17]
families, but also those in the Amaranthaceae [18], Caryophyllaceae [19] and Zygophyllaceae [20]
families, and more recently from fungi [21] and marine organisms [22]. Canthin-6-one (1) (Figure 1)
was first isolated in 1952 by Haynes et al. [23] from the Australian tree Pentaceras australis. A literature
search revealed that since then more than 60 members of this class of alkaloids have been isolated from
natural sources (Table 1).

 

Molecules 2016, 21, 493; doi:10.3390/molecules21040493 www.mdpi.com/journal/molecules 

Review 

Fruitful Decades for Canthin-6-ones from 1952 to 
2015: Biosynthesis, Chemistry, and  
Biological Activities 
Jiangkun Dai 1, Na Li 1, Junru Wang 1,* and Uwe Schneider 2,* 

1 College of Science, Northwest A & F University, Yangling 712100, Shaanxi, China;  
daijkun@hotmail.com (J.D.); lnuk@nwsuaf.edu.cn (N.L.) 

2 EaStCHEM School of Chemistry, The University of Edinburgh, The King’s Buildings, David Brewster Road, 
Edinburgh EH9 3FJ, UK 

* Correspondence: wangjunru@nwsuaf.edu.cn (J.W.); uwe.schneider@ed.ac.uk (U.S.);  
Tel.: +86-29-8709-2829 (J.W.) 

Academic Editor: Derek J. McPhee 
Received: 9 March 2016; Accepted: 6 April 2016; Published: date 

Abstract: In this review, more than 60 natural canthin-6-one alkaloids and their structures are 
considered. The biosynthesis, efficient and classic synthetic approaches, and biological activities  
of canthin-6-one alkaloids, from 1952 to 2015, are discussed. From an analysis of their structural 
properties and an investigation of the literature, possible future trends for canthin-6-one alkaloids are 
proposed. The information reported will be helpful in future research on canthin-6-one alkaloids. 

Keywords: canthin-6-one; biosynthesis; chemistry; biological activities 
 

1. Introduction 

The canthin-6-one alkaloids, a subclass of β-carboline alkaloids with an additional D ring, have 
been isolated from various plants, principally those in the Rutaceae [1–8] and Simaroubaceae [9–17] 
families, but also those in the Amaranthaceae [18], Caryophyllaceae [19] and Zygophyllaceae [20] 
families, and more recently from fungi [21] and marine organisms [22]. Canthin-6-one (1) (Figure 1) 
was first isolated in 1952 by Haynes et al. [23] from the Australian tree Pentaceras australis. A literature 
search revealed that since then more than 60 members of this class of alkaloids have been isolated 
from natural sources (Table 1). 
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Figure 1. Structure of canthin-6-one 1. 
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Table 1. Representative canthin-6-one alkaloids isolated from natural sources.

When Isolated Natural Canthin-6-one Alkaloids

1952–1999 (25)
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of Ailanthus altissima [24], and this was confirmed by a study by Aragozzini’s group a few years
later [25]. Based on the biosynthetic line of canthin-6-one alkaloids, the infractine-functionalized and
nanoparticle-supported biomimetic synthesis of canthin-6-one was accomplished [26]. The first
total synthesis of canthin-6-one (1), which was achieved with a poor overall yield via a classic
Bischer-Napieralski method, was reported in 1966 [27]. In 2013, Hollis Showalter et al. reviewed
the synthetic approaches to canthin-6-ones and their ring-truncated congeners [28], their review
including almost all reported cases. It is noteworthy that these alkaloids have been shown to
have broad potential biological activity, such as antitumor [9,11,13,29–32], antibacterial [33–35],
antifungal [2,4,22,36–38], antiparasitic [16,39–41], antiviral [12,19,42–44], anti-inflammatory [10],
antiproliferative [45,46], and aphrodisiac [47] properties, as well as uses in cancer chemoprevention [48],
DNA screening [49], and reducing elevated levels of proinflammatory cytokines and nitric oxide
production by lipopolysaccharide-stimulated macrophages [50]. Moreover, excellent photophysical
properties were reported by Irikawa et al. in 1987 [51] and, more recently, by Taniguchi et al. in 2012 [15].

This review provides a broad overview of canthin-6-ones. The first section describes the
biosynthetic line and the relevant biosynthetic assembly lines of canthin-6-one alkaloids, the second
section considers classic and efficient synthetic methods, and the last section summarizes the excellent
biological activity of canthin-6-one alkaloids.

2. Biosynthesis

2.1. Biosynthetic Pathway

Guicciardi’s and Aragozzini’s groups were the first to demonstrate the biosynthesis of
canthin-6-one alkaloids. A general biosynthetic pathway starting from tryptophan (2) is depicted in
Scheme 1 [24,25]. All intermediates were characterized by the authors as products of the incorporation
of [methylene-14C]-tryptophan (2). Dihydro-β-carboline-1-propionic acid (4) may be the first
intermediate, with the decarboxylation of tryptophan (2) into tryptamine (3), and a suitable oxidation
may generate β-carboline-1-propionic acid (5), which was isolated in the course of Guicciardi’s feeding
experiments. The tricyclic intermediate (5) could be transformed into 4,5-dihydrocanthin-6-one (6),
which may sequentially yield canthin-6-one (1) after oxidation. The pathway was confirmed by a
supporting feeding experiment carried out in 1988 (inset in Scheme 1).
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2.2. Biosynthetic Assembly Line

Based on the intimate biochemical mechanisms of the biosynthetic pathways, the first nanoparticle
system to mimic the relevant biosynthetic assembly lines to canthin-6-one was elucidated by
Cebrián-Torrejón et al. in 2013 (Scheme 2) [26]. The strategy used relied on: (i) the covalent linkage of
infractine (7) by “click” chemistry to poly(ethylene glycol); (ii) the use of 7-PEG-OH as a macroinitiator
for the ring-opening polymerization of lactide to form 7-PEG-b-PLA copolymer; (iii) the formation of
7-PEG-b-PLA nanoparticles from the self-assembly of 7-PEG-b-PLA in aqueous solution; and (iv) the
potential biomimetic release of canthin-6-one (1) from the nanoparticles.
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Scheme 2. The relevant biosynthetic assembly lines. Reagents and conditions: 7-functionalized
nanoparticles and the biomimetic release of 1 and 6. (a) DCM, Yb(Otf)3 (20 mol %), reflux, 16 h,
27%; (b) 3-butyn-2-ol (excess), N3-PEG-OH (1 equiv.), CuBr (1 equiv.), dimethylformamide, room
temperature (RT), 24 h, PMDTA (N,N,N1,N”,N”-pentamethyldiethylenetriamine), 46%; (c) d,l-lactide
(excess), Sn(Oct)2 (0.4 equiv.), toluene, 115 ˝C, 16 h, 57%; (d) 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
(excess), DCM, air, 72 h (identification of 1 and 6 by mass spectrometry and high-performance liquid
chromatography-ultraviolet detection studies).

3. Chemistry

The canthin-6-one alkaloids have been synthesized via different approaches by many
researchers [2,52–75]. In order to use these methods to guide our review more clearly, we categorized
classic and efficient synthetic methods according to their key reaction steps.

3.1. Bischer-Napieralski Reaction

The use of the Bischer-Napieralski reaction to synthesize canthin-6-one alkaloids was first reported
in 1966 [27], and Soriano-Agaton et al. reported a more recent synthesis in 2005 (Scheme 3) [2].
The overall yield of canthin-6-one in the later synthesis was increased to 76.83% in four steps by
Soriano-Agaton.
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Scheme 3. The synthetic strategy of Soriano-Agaton. Reagents and conditions. (a) Succinic anhydride,
DCM, RT, 18 h, 98%, 99%, 98%, and 98% for 11a´d, respectively; (b) Amberlyst 15, MeOH, reflux, 18 h,
98%; (c) POCl3, PhH, reflux, 1 h; (d) DBU, DCM, RT, 18 h, 80%, 70%, 80%, and 20% in two steps for 1,
14, 15, and 16, respectively.

3.2. Pictet-Spengler Reaction

The Pictet-Spengler reaction was first used to synthesize canthin-6-one alkaloids by Mitscher et
al. in 1975 [73], and many syntheses of canthin-6-one that employ this reaction have been reported
since then. Czerwinski et al. [54] reported an efficient synthetic approach to canthin-6-one via the
Pictet-Spengler reaction in 2003 (Scheme 4), obtaining an overall yield of 46.74%.
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Scheme 4. The synthetic strategy of Czerwinski. Reagents and conditions. (a) Anhydrous acetone,
PhCOCl, NaOH, ´30 ˝C, 95%; (b) anhydrous tetrahydrofuran (THF), LiAlH4, 0 ˝C—reflux, 95%;
(c) α-ketoglutaric acid, PhH/dioxane (6:4), Dean-Stark trap, reflux, 80%; (d) anhydrous MeOH, Pd/C,
HCOONH4, reflux, 83%; (e) PhH/PhMe (3:1), MnO2, reflux, 78%.

3.3. Diels-Alder Reaction

In 1992, Snyder and co-workers reported an elegant strategy for accessing the canthine
skeleton through using indole as a dienophile in an intramolecular inverse electron demand
Diels-Alder (IEDDA) reaction [68]. Subsequently, in 2003, Lindsley et al. [70] reported a “one-pot”
microwave-mediated synthesis of canthin-6-one analogs via the IEDDA reaction (Scheme 5), in which
the overall yield was 48% in two steps.
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3.4. Aldol Reaction

An efficient synthesis of canthin-6-one from β-carboline-1-carbaldehyde via the aldol reaction
was reported by Suzuki et al. in 2005 (Scheme 6) [56]. Using a two-step reaction, canthin-6-one was
obtained with an overall yield of 70.55%.
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3.5. Perkin Reaction

The use of the Perkin reaction to synthesize canthin-6-one alkaloid analogs was reported by
Giudice et al. in 1990 (Scheme 7) [75] and, more recently, by Brahmbhatt et al. in 2010 [42]. Despite the
relatively low overall yield (48.96% for 29 and 46.24% for 30), the synthesis strategy is relatively simple
and low-cost.
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3.6. Non-Classic Strategy

In 2010, Gollner et al. reported a “non-classic” strategy that focused on the construction of the
central B ring (Scheme 8) [61]. The strategy relies on a palladium-catalyzed Suzuki-Miyaura C-C
coupling followed by a copper-catalyzed C-N coupling that can be achieved either stepwise or in a new
one-pot protocol starting from the appropriate 8-bromo-1,5-naphthyridine. Canthin-6-one (1) and nine
analogues were prepared rapidly and in high yields (71%–95%). Ethyl canthin-6-one-1-carboxylate
has also been efficiently synthesized, by Ioannidou et al. in 2011, from readily prepared ethyl
4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate in a three-step “non-classic” reaction that focuses
on the construction of the central pyrrole (B ring) via a palladium-catalyzed Suzuki-Miyaura coupling
followed by a copper-catalyzed C-N coupling; the overall yield was 85% [62].
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4. Biological Activity

Canthin-6-one alkaloids have been reported to have a wide range of potential therapeutic
applications, including, but not limited to, use as antitumor [9,11,13,29–32], antibacterial [33–35],
antifungal [2,4,22,36–38], antiparasitic [16,39–41], antiviral [12,19,42–44], anti-inflammatory [10,76],
antiproliferative [45,46], and aphrodisiac [47] agents, and use in cancer chemoprevention [48], DNA
screening [49], reducing elevated levels of proinflammatory cytokines and nitric oxide production
by lipopolysaccharide-stimulated macrophages [50], and so on. In this review, favorable biological
activities of canthin-6-one alkaloids that are equal to or better than those of standard drugs are
discussed, and their potential is highlighted.

4.1. Antibacterial

In 2007, O’Donnell et al. reported the in vitro antibacterial activity of canthin-6-one alkaloids,
and found minimum inhibitory concentrations (MICs) in the range of 8–82 µg/mL against a
panel of fast-growing Mycobacterium species and 8–64 µg/mL against multidrug-resistant and
methicillin-resistant strains of Staphylococcus aureus [33]. In the same year, Ostrov et al. [34] reported
the use of structure-based molecular docking to identify novel drug-like small molecules. They found
that canthin-6-one could dock to two sites of Escherichia coli DNA gyrase, targeting and inhibiting the
DNA supercoiling activity of purified E. coli DNA gyrase, although it could not effectively accumulate
inside E. coli. Our group has designed and synthesized a series of 3-N-alkylated and 3-N-benzylated
canthin-6-ones, and evaluated their in vitro antibacterial activities. Of these compounds, eleven
3-N-substituted canthin-6-ones were found to be the most potent, with MIC values lower than
1.95 (µg/mL) against S. aureus [77].

4.2. Antitumor

The significant antitumor activity of canthin-6-one alkaloids has been reported by many
researchers. For example, in 2014, Devkota et al. [11] reported a study in which canthin-6-one alkaloids
were tested in an Nf1- and p53-defective mouse malignant glioma tumor cell line engineered to express
a dual reporter (Table 2). The results indicated that the majority of the canthin-6-one alkaloids inhibited
cell growth and exhibited some toxicity. The antitumor mechanism was reported by Dejos et al. in the
same year [45]. They found that the primary effect of canthin-6-one is as an antiproliferative, possibly
by interfering with the G2/M transition. In 2015, Cebrian-Torrejon et al. [78] presented an approach
for studying the performance of novel targets able to overcome cancer stem cell chemoresistance.
The approach was based on voltammetric data for microparticulate films of natural or synthetic
alkaloids from the canthin-6-one series.

Table 2. Cell viability and inhibition of proliferation (%) in an Nf1- and p53-defective mouse Central
Nervous System (CNS) tumor cell line by canthines at 2.0 mg/mL.

Compound Cell Viability (Untreated
Controls = 100)

Inhibition of
Proliferation (%)

Canthin-6-one-9-methoxy-5-O-β-D-glucopyranoside 51 71
9-Methoxycanthin-6-one 41 76

8-Hydroxy-9-methoxycanthin-6-one 51 59
9-Hydroxycanthin-6-one 56 48
canthin-6-one-3-N-oxide 59 70

9-Hydroxycanthin-6-one-3-N-oxide 54 76
11-Hydroxycanthin-6-one-3-N-oxide 54 70

4.3. Antifungal

Canthin-6-one (1) was reported by Thouvenel et al. in 2003 to exhibit a broad spectrum of activity
against Aspergillus fumigatus, A. niger, A. terreus, Candida albicans, C. tropicalis, C. glabrata, C. neoformans,
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Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon beigelii, T. cutaneum, and T. mentagrophytes
var. interdigitale, with MICs between 5.3 and 46 µM [36]. Moreover, in 2005, Soriano-Agaton et al. [2]
described the structure -activity relationships for the antifungal activity of canthin-6-one (Figure 2). The
mechanism of action of the antifungal canthin-6-one series was investigated in Saccharomyces cerevisiae
by Loiseau et al. in 2008 [79]. In 2013, the antifungal mechanism of canthin-6-one was also reported
on by Dejos et al. [38]. Although no novel clues to the mechanism were found, they demonstrated
that the major-facilitator-superfamily (MFS)-type transporter Flr1 may be able to reduce sensitivity to
canthin-6-one when it is overproduced via a higher gene dosage, and that Flr1-mediated tolerance to
canthin-6-one is strictly dependent on the transcription factor Yap1. As Dejos et al. stated, “Although
the Yap1-Flr1 pair is not naturally involved in yeast tolerance to canthin-6-one, this study demonstrates
that their overexpression can lead to resistance to the chemical stress generated by this drug.”
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4.4. Anti-Inflammatory

The transcription factor NF-κB is a key regulator of many proinflammatory pathways, and
therefore its inhibition results in anti-inflammatory effects. Canthin-6-one alkaloids were first found
to be NF-κB inhibitors by Tran et al. in 2014 [10]. The IC50 values of 9-hydroxycanthin-6-one and
9-methoxycanthin-6-one were 3.8 and 7.4 µM, respectively. However, the IC50 value of the standard
drug parthenolide was only 1.5 µM.

4.5. Wnt Signaling Inhibitors

Numerous diseases have been attributed to the aberrant transduction of Wnt signaling,
which regulates various processes such as cell proliferation and differentiation, and embryo
development. In 2015, 9-hydroxycanthin-6-one was screened for its activity in targeting TCF/β-catenin
transcriptional modulating activity with a cell-based luciferase assay by Ohishi et al. [80]. The
degradation of β-catenin by 9-hydroxycanthin-6-one was suppressed by GSK3β-siRNA, while
9-hydroxycanthin-6-one decreased β-catenin even in the presence of CK1α-siRNA. These results
suggest that 9-hydroxycanthin-6-one inhibits Wnt signaling through the activation of GSK3β,
independently of CK1α.

4.6. Protein Tyrosine Phosphatase 1B Inhibitors

As a potential therapy for diabetes, protein tyrosine phosphatase 1B (PTP1B) inhibitors have
attracted considerable attention. In 2015, Sasaki et al. [81] reported that compound 40 (Figure 3)
is the competitive PTP1B inhibitor, with the best inhibitory selectivity of PTP1B and other protein
tyrosine phosphatase (PTPs), and showed in cell-based assays that it promotes activity in the insulin
signaling pathway.
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5. Conclusions and Future Prospects

The main achievements in the study of canthin-6-one alkaloids over the period of 1952 to 2015
have been reviewed, with emphasis on the biosynthesis, chemistry, and biological activities of these
compounds. The low toxicity and good biological activities of canthin-6-one alkaloids mean that
there is potential for them to be developed into new drugs. New research by Doménech-Carbó et
al. has shown that microparticulate films of canthin-6-one on glassy carbon electrodes could yield
separate voltammetric signals for dsDNA, ssDNA, and G-quadruplex DNA, different degrees of DNA
methylation, and biomimetic nucleosomal DNA, with a detection limit of 10´5 M [49]. Moreover,
excellent photophysical properties of canthin-6-one have been recently reported by Taniguchi et al. [15].

Further research by international groups is required to: (i) develop efficient and environmentally
sustainable synthetic strategies for producing canthin-6-one alkaloids on a large scale; (b) elucidate the
structure-activity relationships and mechanisms of the different biological activities of these compounds;
(c) explore their biological activities; and (d) identify electrochemical and photochemical applications.
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