58 research outputs found

    Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

    Get PDF
    To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, β-MCH, Ankrd-1, PKC-α, PKC-δ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response

    Protection against Diarrhea Associated with Giardia intestinalis Is Lost with Multi-Nutrient Supplementation: A Study in Tanzanian Children

    Get PDF
    Giardia intestinalis is a well-known cause of diarrhea in industrialized countries. In children in developing countries, asymptomatic infections are common and their role as cause of diarrhea has been questioned. In a cohort of rural Tanzanian pre-school children, we assessed the association between the presence of Giardia at baseline and subsequent diarrhea risk. The study was conducted in the context of a randomised trial assessing the effect of supplementation with zinc and other micro-nutrients on malaria, and half of the children daily received a multi-nutrient supplement. Surprisingly, we found that the presence of Giardia at baseline was associated with a substantial reduction in diarrhea risk. Multivariate statistical analysis showed that this protection could not be explained by differences in age or walking distance to the dispensary between children with and without Giardia. Because we cannot exclude that children differed in other (unmeasured) characteristics, we cannot draw firm conclusions about the causality of the observed association, but our findings support the view that the parasite is not an important cause of diarrhea in highly endemic settings. Striking was that the Giardia-associated protection was lost when children received multi-nutrients. Our data do not provide information about the mechanisms involved, but suggest that multi-nutrients may influence the compositionor pathogenicity of intestinal biota

    Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis _ state of the art

    Get PDF
    Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
    corecore