10 research outputs found

    A Novel Strategy for Unveiling Spatial Distribution Pattern of Gallotannins in <i>Paeonia rockii</i> and <i>Paeonia ostii</i> Based on LC–QTRAP–MS

    No full text
    Gallotannins (GTs) are a series of hydrolyzable tannins with multiple health-promoting effects. In this study, an integrated liquid chromatography tandem mass spectrometry (LC–MS/MS) strategy was developed for unveiling the spatial distribution pattern of GTs in the emerging oilseed crops Paeonia rockii and P. ostii. According to the fragmentation behavior of the representative GT (1,2,3,4,6-penta-O-galloyl-β-D-glucose, PGG), the diagnostic neutral loss (NL) of 170 Da was chosen for the non-targeted screening of GT precursors. Simultaneously, the tandem mass spectrometry spectrum (MS/MS) information was acquired through an enhanced product ion (EPI) scan. Nine major GTs were identified in tree peony. To quantify the targeted GTs in different tissues of tree peony, we established a multiple reaction monitoring (MRM)–enhanced product ion (EPI)-based pseudo-targeted approach under the information-dependent acquisition (IDA) mode. The quantitative results show that the GT compounds were ubiquitous in tree peony plants with diverse structures. The typical GT PGG was mainly distributed in roots, leaves, and petals. This strategy can also be utilized for metabolite characterization and quantification in other substrates

    Bioremediation Potential of Cr(VI) by <i>Lysinibacillus cavernae</i> CR-2 Isolated from Chromite-Polluted Soil: A Promising Approach for Cr(VI) Detoxification

    No full text
    The present study focuses on an efficient Cr(VI)-reducing bacterial strain (CR-2) isolated from an abandoned chromate plant in Qinghai Province, China. CR-2 was confirmed as Lysinibacillus cavernae using 16S rRNA gene sequencing. CR-2 could survive at 500 mg L−1 Cr(VI) and effectively reduce Cr(VI) at concentrations of −1, a pH of 5–9, a temperature of 20–40 °C, and a salinity of 5–15 g L−1. According to the Box–Behnken experimental design, the maximum Cr(VI) removal efficiency by L. cavernae CR-2 was 76.21% under optimum conditions, which comprised a pH of 6.68, a temperature of 28.90 °C, and a salinity of 9.85 g L−1. With regard to Cr(VI) reduction mediated by L. cavernae CR-2, enhancement in efficiency was observed in the presence of Cu2+ and Ca2+, while significant inhibition in the reduction capacity occurred upon exposure to Mg2+, Ba2+, Ni2+, Pb2+, or Cd2+. Moreover, L. cavernae CR-2 tends to use glucose as an electron donor for the reduction of Cr(VI). Results of cell fraction separation and degeneration indicated that the Cr(VI) removal was primarily due to the reduction of Cr(VI) via chromium reductase in the cytoplasm. In addition, bioanalysis of L. cavernae CR-2 by SEM-EDS and TEM-EDS suggested that Cr was distributed both on the surface and in the cell cytoplasm. FT-IR analyses established that multiple functional groups (hydroxyl, carbonyl, amide, amino, and aldehyde groups) participated in the Cr(VI) biosorption on the cell surface. XPS and HPLC also showed that the Cr(III) end-products could be present as Cr(III) hydroxides or as organic–Cr(III) complexes. This study yields insights into the Cr(VI) bioreduction mechanism of L. cavernae CR-2.</p

    Prognostic value and biological function of LRRN4 in colorectal cancer

    No full text
    Background Several nervous and nerve-related biomarkers have been detected in colorectal cancer (CRC) and can contribute to the progression of CRC. However, the role of leucine-rich repeat neuronal 4 (LRRN4), a recently identified neurogenic marker, in CRC remains unclear. Methods We examined the expression and clinical outcomes of LRRN4 in CRC from TCGA-COREAD mRNA-sequencing datasets and immunohistochemistry in a Chinese cohort. Furthermore, colony formation, flow cytometry, wound healing assays and mouse xenograft models were used to investigate the biological significance of LRRN4 in CRC cell lines with LRRN4 knockdown or overexpression in vitro and in vivo. In addition, weighted coexpression network analysis, DAVID and western blot analysis were used to explore the potential molecular mechanism. Results We provide the first evidence that LRRN4 expression, at both the mRNA and protein levels, was remarkably high in CRC compared to controls and positively correlated with the clinical outcome of CRC patients. Specifically, LRRN4 was an independent prognostic factor for progression-free survival and overall survival in CRC patients. Further functional experiments showed that LRRN4 promoted cell proliferation, cell DNA synthesis and cell migration and inhibited apoptosis. Knockdown of LRRN4 can correspondingly decrease these effects in vitro and can significantly suppress the growth of xenografts. Several biological functions and signaling pathways were regulated by LRRN4, including proteoglycans in cancer, glutamatergic synapse, Ras, MAPK and PI3K. LRRN4 knockdown resulted in downregulation of Akt, p-Akt, ERK1/2 and p-ERK1/2, the downstream of the Ras/MAPK signaling pathway, overexpression of LRRN4 leaded to the upregulation of these proteins. Conclusions Our results suggest that LRRN4 could be a biological and molecular determinant to stratify CRC patients into distinct risk categories, and mechanistically, this is likely attributable to LRRN4 regulating several malignant phenotypes of neoplastic cells via RAS/MAPK signal pathways.Funding Agencies|Nature Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81972592]; 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University [ZYGD20007, ZYJC18011]; Space Medical Experiment Project of China Manned Space Program [HYZHXM01004]</p

    PD-L1 siRNA hitched polyethyleneimine-elastase constituting nanovesicle induces tumor immunogenicity and PD-L1 silencing for synergistic antitumor immunotherapy

    No full text
    Abstract Background PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. Results We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. Conclusions In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors. Graphical Abstrac

    Zipper-Confined DNA Nanoframe for High-Efficient and High-Contrast Imaging of Heterogeneous Tumor Cell

    No full text
    Current study in the heterogeneity and physiological behavior of tumor cells is limited by the fluorescence in situ hybridization technology in terms of probe assembly efficiency, background suppression capability, and target compatibility. In a typically well-designed assay, hybridization probes are constructed in a confined nanostructure to achieve a rapid assembly for efficient signal response, while the excessively high local concentration between different probes inevitably leads to nonspecific background leakage. Inspired by the fabric zipper, we propose a novel confinement reaction pattern in a zipper-confined DNA nanoframe (ZCDN), where two kinds of hairpin probes are independently anchored respective tracks. The metastable states of the dual tracks can well avoid signal leakage caused by the nonspecific probe configuration change. Biomarker-mediated proximity ligation reduces the local distance of dual tracks, kinetically triggering an efficient allosteric chain reaction between the hairpin probes. This method circumvents nonspecific background leakage while maintaining a high efficiency in responding to targets. ZCDN is employed to track different cancer biomarkers located in both the cytoplasm and cytomembrane, of which the expression level and oligomerization behavior can provide crucial information regarding intratumoral heterogeneity. ZCDN exhibits high target response efficiency and strong background suppression capabilities and is compatible with various types of biological targets, thus providing a desirable tool for advanced molecular diagnostics

    Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    No full text
    The metanephric mesenchyme (MM) cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET), the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR) and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP) signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM). The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM) at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM). However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2
    corecore