257 research outputs found
Force-induced misfolding in RNA
RNA folding is a kinetic process governed by the competition of a large
number of structures stabilized by the transient formation of base pairs that
may induce complex folding pathways and the formation of misfolded structures.
Despite of its importance in modern biophysics, the current understanding of
RNA folding kinetics is limited by the complex interplay between the weak
base-pair interactions that stabilize the native structure and the disordering
effect of thermal forces. The possibility of mechanically pulling individual
molecules offers a new perspective to understand the folding of nucleic acids.
Here we investigate the folding and misfolding mechanism in RNA secondary
structures pulled by mechanical forces. We introduce a model based on the
identification of the minimal set of structures that reproduce the patterns of
force-extension curves obtained in single molecule experiments. The model
requires only two fitting parameters: the attempt frequency at the level of
individual base pairs and a parameter associated to a free energy correction
that accounts for the configurational entropy of an exponentially large number
of neglected secondary structures. We apply the model to interpret results
recently obtained in pulling experiments in the three-helix junction S15 RNA
molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where
force favors the formation of a stable non-native hairpin. The model reproduces
the pattern of unfolding and refolding force-extension curves, the distribution
of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure
Trap models with slowly decorrelating observables
We study the correlation and response dynamics of trap models of glassy
dynamics, considering observables that only partially decorrelate with every
jump. This is inspired by recent work on a microscopic realization of such
models, which found strikingly simple linear out-of-equilibrium
fluctuation-dissipation relations in the limit of slow decorrelation. For the
Barrat-Mezard model with its entropic barriers we obtain exact results at zero
temperature for arbitrary decorrelation factor . These are then
extended to nonzero , where the qualitative scaling behaviour and all
scaling exponents can still be found analytically. Unexpectedly, the choice of
transition rates (Glauber versus Metropolis) affects not just prefactors but
also some exponents. In the limit of slow decorrelation even complete scaling
functions are accessible in closed form. The results show that slowly
decorrelating observables detect persistently slow out-of-equilibrium dynamics,
as opposed to intermittent behaviour punctuated by excursions into fast,
effectively equilibrated states.Comment: 29 pages, IOP styl
Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater.
Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of <i>tet</i> (W) and <i>sul</i> 1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus <i>Clostridium</i> was identified as a potential specific vector for the dissemination of <i>tet</i> (W), due to a strong correlation with <i>tet</i> (W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment
Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples
The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (βAOB) was evaluated. βAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the βAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations βAMOf/βAMOr, βAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on βAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples
Tailoring symmetry groups using external alternate fields
Macroscopic systems with continuous symmetries subjected to oscillatory
fields have phases and transitions that are qualitatively different from their
equilibrium ones. Depending on the amplitude and frequency of the fields
applied, Heisenberg ferromagnets can become XY or Ising-like -or, conversely,
anisotropies can be compensated -thus changing the nature of the ordered phase
and the topology of defects. The phenomena can be viewed as a dynamic form of
"order by disorder".Comment: 4 pages, 2 figures finite dimension and selection mechanism clarifie
The Eukaryotic Promoter Database (EPD): recent developments
The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes description of the initiation site mapping data, cross-references to other databases, and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Recent efforts have focused on exhaustive cross-referencing to the EMBL nucleotide sequence database, and on the improvement of the WWW-based user interfaces and data retrieval mechanisms. EPD can be accessed at http://www.epd.isb-sib.c
Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring
Objectives: Monitoring tacrolimus blood concentrations is important for preventing allograft rejection in transplant patients. Our hospital offers dried blood spot (DBS) sampling, giving patients the opportunity to sample a drop of blood from a fingerprick at home, which can be sent to the laboratory by mail. In this study, both a volumetric absorptive microsampling (VAMS) device and DBS sampling were compared to venous whole blood (WB) sampling. Methods: A total of 130 matched fingerprick VAMS, fingerprick DBS and venous WB samples were obtained from 107 different kidney transplant patients by trained phlebotomists for method comparison using Passing-Bablok regression. Bias was assessed using Bland-Altman. A multidisciplinary team pre-defined an acceptance limit requiring ï80% of all matched samples within 15% of the mean of both samples. Sampling quality was evaluated for both VAMS and DBS samples. Results: 32.3% of the VAMS samples and 6.2% of the DBS samples were of insufficient quality, leading to 88 matched samples fit for analysis. Passing-Bablok regression showed a significant difference between VAMS and WB, with a slope of 0.88 (95% CI 0.81-0.97) but not for DBS (slope 1.00; 95% CI 0.95-1.04). Both VAMS (after correction for the slope) and DBS showed no significant bias in Bland-Altman analysis. For VAMS and DBS, the acceptance limit was met for 83.0% and 96.6% of the samples, respectively. Conclusions: VAMS sampling can replace WB sampling for tacrolimus trough concentration monitoring, but VAMS sampling is currently inferior to DBS sampling, both regarding sample quality and agreement with WB tacrolimus concentrations. c 2020 Daan J. Touw et al., published by De Gruyter
Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium
Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological method
- …