248 research outputs found

    Effect of maternal obesity and preconceptional weight loss on male and female offspring metabolism and olfactory performance in mice

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. According to the “developmental origins of health and disease” (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours

    Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    Get PDF
    Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable

    The case for strategic international alliances to harness nutritional genomics for public and personal health

    Get PDF
    Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countrie

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link

    Effects of supervised aerobic and strength training in overweight and grade I obese pregnant women on maternal and foetal health markers: the GESTAFIT randomized controlled trial

    Full text link

    Epigenetics, interface between environment and genes: role in complex diseases

    Full text link
    peer reviewedEpigenetics is the study of heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. Epigenetics is one of the major mechanisms explaining the "Developmental Origin of Health and Diseases" (DOHaD). Besides genetic background inherited from parents, which confers susceptibility to certain pathologies, epigenetic changes constitute the memory of previous events, either positive or negative, along the life cycle, including at the in utero stage. The later exposition to hostile environment may reveal such susceptibility, with the development of various pathologies, among them numerous chronic complex diseases. The demonstration of such a sequence of events has been shown for metabolic diseases as obesity, metabolic syndrome and type 2 diabetes, cardiovascular disease and cancer. In contrast to genetic predisposition, which is irreversible, epigenetic changes are potentially reversible, thus giving targets not only for prevention, but possibly also for the treatment of certain complex diseases
    corecore