76 research outputs found

    The effect of leg hyperthermia using far infrared rays in bedridden subjects with type 2 diabetes mellitus

    Get PDF
    We examined the effect of leg hyperthermia on oxidative stress in bedridden subjects with type 2 diabetes mellitus using 15-min sessions of far infrared rays over a two-week period. Four subjects (male 1, female 3) incapacitated by a stroke were recruited for this study. All patients were admitted to Takahashi Central Hospital and ate the same hospital meals. Fasting plasma glucose, HbA1c, tumor necrosis factor (TNF)alpha, free fatty acid, leptin, adiponectin and plasma 8-epi-prostaglandin F2alpha (8-epi-PGF2alpha) levels as a marker of oxidative stress were measured on admission, just before and 2 weeks after local heating of the leg. Results showed that plasma total 8-epi-PGF2alpha levels were decreased significantly while TNFalpha levels were increased significantly. On the other hand, glucose, HbA1c, free fatty acid, leptin and adiponectin levels were not changed during the study period. These results suggest that repeated leg hyperthermia may protect against oxidative stress.</p

    The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species

    Get PDF
    Advances in magnetic resonance imaging (MRI) and computational analysis technology have enabled comparisons among various primate brains in a three-dimensional electronic format. Results from comparative studies provide information about common features across primates and species-specific features of neuroanatomy. Investigation of various species of non-human primates is important for understanding such features, but the majority of comparative MRI studies have been based on experimental primates, such as common marmoset, macaques, and chimpanzee. A major obstacle has been the lack of a database that includes non-experimental primates’ brain MRIs. To facilitate scientific discoveries in the field of comparative neuroanatomy and brain evolution, we launched a collaborative project to develop an open-resource repository of non-human primate brain images obtained using ex vivo MRI. As an initial open resource, here we release a collection of structural MRI and diffusion tensor images obtained from 12 species: pygmy marmoset, owl monkey, white-fronted capuchin, crab-eating macaque, Japanese macaque, bonnet macaque, toque macaque, Sykes’ monkey, red-tailed monkey, Schmidt’s guenon, de Brazza’s guenon, and lar gibbon. Sixteen postmortem brain samples from the 12 species, stored in the Japan Monkey Centre (JMC), were scanned using a 9.4-T MRI scanner and made available through the JMC collaborative research program (http://www.j-monkey.jp/BIR/index_e.html). The expected significant contributions of the JMC Primates Brain Imaging Repository include (1) resources for comparative neuroscience research, (2) preservation of various primate brains, including those of endangered species, in a permanent digital form, (3) resources with higher resolution for identifying neuroanatomical features, compared to previous MRI atlases, (4) resources for optimizing methods of scanning large fixed brains, and (5) references for veterinary neuroradiology. User-initiated research projects beyond these contributions are also anticipated

    The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records

    Get PDF
    超高磁場MRIで見る霊長類「全脳」神経回路の多様性 --分野横断型の霊長類脳標本画像リポジトリ:ヒト脳と精神・神経疾患の理解を加速する国際研究基盤--. 京都大学プレスリリース. 2023-05-22.A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes’ monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form

    Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the mongolian gerbil

    Get PDF
    Transplantation of human neural stem/progenitor cells (hNSPCs) is a promising method to regenerate tissue from damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1) is a lectin that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of human Gal1 protein (hGal1) resulted in functional recovery after brain ischemia but failed to reduce the volume of the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-hNSPCs) in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia

    Inhibitory Effect of 1α-Hydroxyvitamin D3 on N-nitrosobis (2-oxopropyl)Amine-induced Cholangiocarcinogenesis in Syrian Hamsters

    Get PDF
    Sixty-three male 5-week-old Syrian hamsters received the carcinogen N-nitrosobis(2-oxopropyl)amine (BOP) s.c. in 5 weekly injections (the first, 70mg/kg body, and the remaining, 20mg/kg each). The hamsters that received BOP were given intragastric administration of 0.2ml of medium chain triglyceride (MCT) with or without 0.04μg of 1α-hydroxyvitamin D3 [1α(OH)D3] through a feeding tube for 12 weeks. Thus, 3 groups were assigned:Group 1;BOP alone (n=20), Group 2;BOP+MCT (n=18) and Group 3;BOP+1α(OH)D3 (n=25). The mean body weight of Group 3 was lower than those of Groups 1 and 2 at the end of the experiment (p<0.001,Tukey-Kramer HSD test). At the end of week 12, all surviving hamsters were put to sleep. The incidences of liver tumors were 80%, 72% and 32% in Groups 1, 2 and 3, respectively. The incidence of tumors in Group 3 was significantly lower than in Group 1 and Group 2 (p<0.05, χ2-test). All tumors were cholangiocarcinoma. These results indicated that BOP-induced cholangiocarcinogenesis was suppressed by the supplemental administration of 1α(OH)D3

    Visualization of nerve fibers around the carotid bifurcation with use of a 9.4 Tesla microscopic magnetic resonance diffusion tensor imaging with tractography

    Get PDF
    BACKGROUND: Precise imaging of nerves have been challenging in the head and neck region, mainly due to low spatial resolution. Here, we investigated how nerves in the head and neck region could be visualized using an ultra-high magnetic field MR system. METHODS: We used formol-carbol-fixed human cadaveric necks and obtained MR diffusion tensor images (DTIs) using a 9.4 Tesla (T) ultra-high magnetic field MR system. Afterward, we prepared tissue sections and checked the anatomic relationships between the neurons and the carotid artery in order to confirm that the visualized fibers are indeed neuron fibers. RESULTS: We were able to identify nerves, including the vagus nerve, the hypoglossal nerve, and the spinal-accessory nerve. Hematoxylin-eosin stained histological sections confirmed neuron fibers in the same anatomic position. CONCLUSION: This technique has the feasibility to be applied for a more accurate anatomic understanding, maybe even close to a histological level

    Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging

    Get PDF
    Background Skeletal muscles include fast and slow muscle fibers. The tibialis anterior muscle (TA) is mainly composed of fast muscle fibers, whereas the soleus muscle (SOL) is mainly composed of slow muscle fibers. However, a noninvasive approach for appropriately investigating the characteristics of muscles is not available. Monitoring of skeletal muscle characteristics can help in the evaluation of the effects of strength training and diseases on skeletal muscles. Purpose The present study aimed to determine whether q-space imaging can distinguish between TA and SOL in in vivo mice. Methods In vivo magnetic resonance imaging of the right calves of mice (n = 8) was performed using a 7-Tesla magnetic resonance imaging system with a cryogenic probe. TA and SOL were assessed. q-space imaging was performed with a field of view of 10 mm x 10 mm, matrix of 48 x 48, and section thickness of 1000 mu m. There were ten b-values ranging from 0 to 4244 s/mm(2), and each b-value had diffusion encoding in three directions. Magnetic resonance imaging findings were compared with immunohistological findings. Results Full width at half maximum and Kurtosis maps of q-space imaging showed signal intensities consistent with immunohistological findings for both fast (myosin heavy chain II) and slow (myosin heavy chain I) muscle fibers. With regard to quantification, both full width at half maximum and Kurtosis could represent the immunohistological findings that the cell diameter of TA was larger than that of SOL (P < 0.01). Conclusion q-space imaging could clearly differentiate TA from SOL using differences in cell diameters. This technique is a promising method to noninvasively estimate the fiber type ratio in skeletal muscles, and it can be further developed as an indicator of muscle characteristics.journal articl
    corecore