12 research outputs found

    Predicting September Arctic Sea Ice: A Multi-Model Seasonal Skill Comparison

    Get PDF
    Abstract This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.</jats:p

    Prediction of Arctic Sea Ice Concentration Using a Fully Data Driven Deep Neural Network

    No full text
    The Arctic sea ice is an important indicator of the progress of global warming and climate change. Prediction of Arctic sea ice concentration has been investigated by many disciplines and predictions have been made using a variety of methods. Deep learning (DL) using large training datasets, also known as deep neural network, is a fast-growing area in machine learning that promises improved results when compared to traditional neural network methods. Arctic sea ice data, gathered since 1978 by passive microwave sensors, may be an appropriate input for training DL models. In this study, a large Arctic sea ice dataset was employed to train a deep neural network and this was then used to predict Arctic sea ice concentration, without incorporating any physical data. We compared the results of our methods quantitatively and qualitatively to results obtained using a traditional autoregressive (AR) model, and to a compilation of results from the Sea Ice Prediction Network, collected using a diverse set of approaches. Our DL-based prediction methods outperformed the AR model and yielded results comparable to those obtained with other models

    Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks

    No full text
    Recently, measurement of sea ice thickness (SIT) has received increasing attention due to the importance of thinning ice in the context of global warming. Although altimeter sensors onboard satellite missions enable continuous SIT measurements over larger areas compared to in situ observations, these sensors are inadequate for mapping daily Arctic SIT because of their small footprints. We exploited passive microwave data from AMSR2 (Advanced Microwave Scanning Radiometer 2) by incorporating a state-of-the-art deep learning (DL) approach to address this limitation. Passive microwave data offer better temporal resolutions than those from a single altimeter sensors, but are rarely used for SIT estimations due to their limited physical relationship with SIT. In this study, we proposed an ensemble DL model with different modalities to produce daily pan-Arctic SIT retrievals. The proposed model determined the hidden and unknown relationships between the brightness temperatures of AMSR2 channels and SITs measured by CryoSat-2 (CS2) from the extended input features defined by our feature augmentation strategy. Although AMSR2-based SITs agreed well with CS2-derived gridded SIT values, they had similar uncertainties and errors in the CS2 SIT measurements, particularly for thin ice. However, based on quantitative validations using long-term unseen data and IceBridge data, the proposed retrieval model consistently generated SITs from AMSR2 at 25 km spatial resolution, regardless of time and space

    Mapping Potential Plant Species Richness over Large Areas with Deep Learning, MODIS, and Species Distribution Models

    No full text
    The spatial patterns of species richness can be used as indicators for conservation and restoration, but data problems, including the lack of species surveys and geographical data gaps, are obstacles to mapping species richness across large areas. Lack of species data can be overcome with remote sensing because it covers extended geographic areas and generates recurring data. We developed a Deep Learning (DL) framework using Moderate Resolution Imaging Spectroradiometer (MODIS) products and modeled potential species richness by stacking species distribution models (S-SDMs) to ask, “What are the spatial patterns of potential plant species richness across the Korean Peninsula, including inaccessible North Korea, where survey data are limited?” First, we estimated plant species richness in South Korea by combining the probability-based SDM results of 1574 species and used independent plant surveys to validate our potential species richness maps. Next, DL-based species richness models were fitted to the species richness results in South Korea, and a time-series of the normalized difference vegetation index (NDVI) and leaf area index (LAI) from MODIS. The individually developed models from South Korea were statistically tested using datasets that were not used in model training and obtained high accuracy outcomes (0.98, Pearson correlation). Finally, the proposed models were combined to estimate the richness patterns across the Korean Peninsula at a higher spatial resolution than the species survey data. From the statistical feature importance tests overall, growing season NDVI-related features were more important than LAI features for quantifying biodiversity from remote sensing time-series data

    Two-Stream Convolutional Long- and Short-Term Memory Model Using Perceptual Loss for Sequence-to-Sequence Arctic Sea Ice Prediction

    No full text
    Arctic sea ice plays a significant role in climate systems, and its prediction is important for coping with global warming. Artificial intelligence (AI) has gained recent attention in various disciplines with the increasing use of big data. In recent years, the use of AI-based sea ice prediction, along with conventional prediction models, has drawn attention. This study proposes a new deep learning (DL)-based Arctic sea ice prediction model with a new perceptual loss function to improve both statistical and visual accuracy. The proposed DL model learned spatiotemporal characteristics of Arctic sea ice for sequence-to-sequence predictions. The convolutional neural network-based perceptual loss function successfully captured unique sea ice patterns, and the widely used loss functions could not use various feature maps. Furthermore, the input variables that are essential to accurately predict Arctic sea ice using various combinations of input variables were identified. The proposed approaches produced statistical outcomes with better accuracy and qualitative agreements with the observed data

    Spectral Characteristics of the Antarctic Vegetation: A Case Study of Barton Peninsula

    No full text
    Spectral information is a proxy for understanding the characteristics of ground targets without a potentially disruptive contact. A spectral library is a collection of this information and serves as reference data in remote sensing analyses. Although widely used, data of this type for most ground objects in polar regions are notably absent. Remote sensing data are widely used in polar research because they can provide helpful information for difficult-to-access or extensive areas. However, a lack of ground truth hinders remote sensing efforts. Accordingly, a spectral library was developed for 16 common vegetation species and decayed moss in the ice-free areas of Antarctica using a field spectrometer. In particular, the relative importance of shortwave infrared wavelengths in identifying Antarctic vegetation using spectral similarity comparisons was demonstrated. Due to the lack of available remote sensing images of the study area, simulated images were generated using the developed spectral library. Then, these images were used to evaluate the potential performance of the classification and spectral unmixing according to spectral resolution. We believe that the developed library will enhance our understanding of Antarctic vegetation and will assist in the analysis of various remote sensing data

    Catalytic Activity of Ni<sub>1-x</sub>Li<sub>2x</sub>WO<sub>4</sub> Particles for Carbon Dioxide Photoreduction

    No full text
    This study introduces NiWO4 as a main photocatalyst, where the Ni component promotes methanation to generate a WO3-based catalyst, as a new type of catalyst that promotes the photoreduction of carbon dioxide by slowing the recombination of electrons and holes. The bandgap of NiWO4 is 2.74 eV, which was expected to improve the initial activity for the photoreduction of carbon dioxide. However, fast recombination between the holes and electrons was also expected. To overcome this problem, attempts were made to induce structural defects by partially replacing the Ni2+ ions in NiWO4 with Li+. The resulting CO2 conversion reaction was greatly enhanced with the Ni1-xLi2xWO4 catalysts containing Li+, compared to that of the pure NiWO4 catalysts. Notably, the total amount of CO and CH4 produced with the Ni0.8Li0.4WO4 catalyst was 411.6 nmol g&#8722;1. It is believed that the insertion of Li+ ions into the NiWO4 skeleton results in lattice defects due to charge and structural imbalance, which play a role in the capture of CO2 gas or excited electrons, thereby inhibiting recombination between the electrons and holes in the Ni1-xLi2xWO4 particles

    Chronological changes in soil biogeochemical properties of the glacier foreland of Midtre Lovénbreen, Svalbard, attributed to soil-forming factors

    No full text
    Accepted manuscript version, licensed CC BY-NC-ND 4.0. Glacier forelands provide an excellent opportunity to investigate vegetation succession and soil development along the chronosequence; however, there are few studies on soil biogeochemical changes from environmental factors, aside from time. This study aimed to investigate soil development and biogeochemical changes in the glacier foreland of Midtre Lov ́enbreen, Svalbard, by considering various factors, including time. Eighteen vegetation and soil variables were measured at 38 different sampling sites of varying soil age, depth, and glacio- fluvial activity. Soil organic matter (SOM) was quantitatively measured, and the compositional changes in SOM were determined following size-density fractionation. In the topsoil, the soil organic carbon (SOC) and total nitrogen (N) content was found to increase along the soil chronosequence and were highly correlated with vegetation-associated variables. These findings suggest that plant-derived material was the main driver of the light fraction of SOM accumulation in the topsoil. The heavy fractions of SOM were composed of microbially transformed organic compounds, eventually contributing to SOM stabilization within short 90-yr deglaciation under harsh climatic conditions. In addition to time, the soil vertical profiles showed that other environmental parameters, also affected the soil biogeochemical properties. The high total phosphorous (P) content and elec- trical conductivity in the topsoil were attributed to unweathered subglacial materials and a considerable amount of inorganic ions from subglacial meltwater. The high P and magnesium content in the subsoil were attributed to parent materials, while the high sodium and potassium content in the surface soil were a result of sea-salt deposition. Glacio-fluvial runoff hampered ecosystem development by inhibiting vegetation development and SOM accumulation. This study emphasizes the importance of considering various soil-forming factors, including parent/subglacial materials, aeolian deposition, and glacio-fluvial runoff, as well as soil age, to obtain a comprehensive understanding of the ecosystem development in glacier forelands
    corecore