692 research outputs found

    Traveling-wave deceleration of SrF molecules

    Get PDF
    We report on the production, deceleration and detection of a SrF molecular beam. The molecules are captured from a supersonic expansion and are decelerated in the X2Σ+(v=0,N=1)^2\Sigma^+ (v=0, N=1) state. We demonstrate the removal of up to 40% of the kinetic energy with a 2 meter long modular traveling-wave decelerator. Our results demonstrate a crucial step towards the preparation of ultracold gases of heavy diatomic molecules for precision spectroscopy

    124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics

    Get PDF
    Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.We thank Martin Spitaler and the imaging facility of the MPI of Biochemistry for confocal imaging support

    Photoelectron imaging of XUV photoionization of CO2 by 13-40 eV synchrotron radiation

    Get PDF
    Valence band photoionization of CO2 has been studied by photoelectron spectroscopy using a velocity map imaging spectrometer and synchrotron radiation. The measured data allow retrieving electronic and vibrational branching ratios, vibrationally resolved asymmetry parameters, and the total electron yield which includes multiple strong resonances. Additionally, the spectrum of low kinetic energy electrons has been studied in the resonant region, and the evolution with photon energy of one of the forbidden transitions present in the slow photoelectrons spectrum has been carefully analyzed, indicating that in the presence of auto-ionizing resonances the vibrational populations of the ion are significantly redistributed

    Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes

    Get PDF
    Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis

    Precise Measurement of Magnetic Field Gradients from Free Spin Precession Signals of 3^{3}He and 129^{129}Xe Magnetometers

    Full text link
    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3^3He and 129^{129}Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC_C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to beBz=(5.6±0.4)|\vec{\nabla}B_z|=(5.6 \pm 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale

    Aspects of Cooling at the TRIμ\muP Facility

    Full text link
    The Triμ\muP facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear β\beta-decay through β\beta-ν\nu momentum correlations as well as searches for permanent electric dipole moments in heavy atomic systems like radium. Such experiments offer a large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3 figure

    Visualizing the Coupling between Red and Blue Stark States Using Photoionization Microscopy

    Get PDF
    In nonhydrogenic atoms in a dc electric field, the finite size of the ionic core introduces a coupling between quasibound Stark states that leads to avoided crossings between states that would otherwise cross. Near an avoided crossing, the interacting states may have decay amplitudes that cancel each other, decoupling one of the states from the ionization continuum. This well- known interference narrowing effect, observed as a strongly electric field- dependent decrease in the ionization rate, was previously observed in several atoms. Here we use photoionization microscopy to visualize interference narrowing in helium atoms, thereby explicitly revealing the mechanism by which Stark states decay. The interference narrowing allows measurements of the nodal patterns of red Stark states, which are otherwise not observable due to their intrinsic short lifetime

    Calculation of energy levels and transition amplitudes for barium and radium

    Get PDF
    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium is insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s7s, 7p7p and 6d6d single-electron states as well as the states of the 7s8s7s8s, 7s8p7s8p and 7s7d7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d26d^2, 7s8s7s8s, 7p27p^2, and 6d7p6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.Comment: 12 pages, 4 table

    On-line Excited-State Laser Spectroscopy of Trapped Short-Lived Ra+^+ Ions

    Get PDF
    As an important step towards an atomic parity violation experiment in one single trapped Ra+^+ ion, laser spectroscopy experiments were performed with on-line produced short-lived 212,213,214^{212,213,214}Ra+^+ ions. The isotope shift of the 6\,^2D3/2_{3/2}\,-\,7\,^2P1/2_{1/2} and 6\,^2D3/2_{3/2}\,-\,7\,^2P3/2_{3/2} transitions and the hyperfine structure constant of the 7\,^2S1/2_{1/2} and 6\,^2D3/2_{3/2} states in 213^{213}Ra+^+ were measured. These values provide a benchmark for the required atomic theory. A lower limit of 232(4)232(4) ms for the lifetime of the metastable 6\,^2D5/2_{5/2} state was measured by optical shelving.Comment: 4.2 pages, 6 figures, 2 tables

    Shedding of hyaluronate synthase from streptococci

    Full text link
    corecore