43 research outputs found

    Free exopolysaccharide from Mycoplasma mycoides subsp. mycoides possesses anti-inflammatory properties

    Get PDF
    In this study we explored the immunomodulatory properties of highly purified free galactan, the soluble exopolysaccharide secreted by Mycoplasma mycoides subsp. mycoides (Mmm). Galactan was shown to bind to TLR2 but not TLR4 using HEK293 reporter cells and to induce the production of the anti-inflammatory cytokine IL-10 in bovine macrophages, whereas low IL-12p40 and no TNF-α, both pro-inflammatory cytokines, were induced in these cells. In addition, pre-treatment of macrophages with galactan substantially reduced lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines TNF- and IL-12p40 while increasing LPS-induced secretion of immunosuppressive IL-10. Also, galactan did not activate naïve lymphocytes and induced only low production of the Th1 cytokine IFN-γ in Mmm-experienced lymphocytes. Finally, galactan triggered weak recall proliferation of CD4+ T lymphocytes from contagious bovine pleuropneumonia-infected animals despite having a positive effect on the expression of co-stimulatory molecules on macrophages. All together, these results suggest that galactan possesses anti-inflammatory properties and potentially provides Mmm with a mechanism to evade host innate and adaptive cell-mediated immune responses. (Résumé d'auteur

    Cervico-vaginal immunoglobulin g levels increase post-ovulation independently of neutrophils

    Get PDF
    The prevalence of sexually transmitted infections (STIs) is often higher in females than in males. Although the reproductive cycle profoundly modulates local immunity in the female reproductive tract (FRT) system, significant gaps in our knowledge of the immunobiology of the FRT still exist. An intriguing and frequently observed characteristic of the FRT is the predominant presence of immunoglobulin (Ig) G in cervico-vaginal secretions. We show here that in the mouse, IgG accumulation was enhanced approximately 5-fold post-ovulation, and was accompanied by an influx of neutrophils into the FRT. To determine whether these two events were causally related, we performed short-term neutrophil depletion experiments at individual stages throughout the estrous cycle. Our results demonstrate that neutrophils were not necessary for cycle-dependent tissue remodeling and cycle progression and that cycle-dependent IgG accumulation occurred independent of neutrophils. We thus conclude that neutrophil influx and IgG accumulation are independent events that occur in the FRT during the reproductive cycle

    Morphological characterization and immunohistochemical detection of the proinflammatory cytokines IL-1β, IL-17A, and TNF-α in lung lesions associated with contagious bovine pleuropneumonia

    Get PDF
    Contagious bovine pleuropneumonia (CBPP), a severe respiratory disease, is characterized by massive inflammation of the lung especially during the acute clinical stage of infection. Tissue samples from cattle, experimentally infected with Mycoplasma mycoides subsp. mycoides Afadé, were subjected to histopathological and immunohistochemical examination in order to provide insight into innate immune pathways that shape inflammatory host responses. Lung lesions were characterized by vasculitis, necrosis, and increased presence of macrophages and neutrophils, relative to uninfected animals. The presence of three cytokines associated with innate inflammatory immune responses, namely, IL-1β, IL-17A, and TNF-α, were qualitatively investigated in situ. Higher cytokine levels were detected in lung tissue samples from CBPP-affected cattle compared to samples derived from an uninfected control group. We therefore conclude that the cytokines TNF-α and IL-1β, which are prevalent in the acute phase of infections, play a role in the inflammatory response seen in the lung tissue in CBPP. IL-17A gets released by activated macrophages and attracts granulocytes that modulate the acute phase of the CBPP lesions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11250-016-0994-9) contains supplementary material, which is available to authorized users

    Host hindrance to HIV-1 replication in monocytes and macrophages

    Get PDF
    Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types

    Evidence for involvement of peptidoglycan in the triggering of an oxidative burst by Listeria monocytogenes in phagocytes

    No full text
    We have shown previously that in listeric encephalitis of cattle and rats, nitrotyrosine was produced in microabscesses, implying that both superoxide anion (O(2)(–)) and nitric oxide (NO) are present and react with each other. Evidence of local synthesis of NO by macrophages was provided, but the source of O(2)(–) remained unknown. Here we have examined whether phagocytes exposed to viable and heat-killed Listeria monocytogenes (LMΔ) produce O(2)(–) and, if so, whether this results from direct interaction of phagocytes with the bacterial surface of L. monocytogenes or whether prior opsonization is required. Using lucigenin-enhanced chemiluminescence (LCL) for the measurement of O(2)(–), we show that LMΔ induces an oxidative burst in human neutrophils, monocytes and monocyte-derived macrophages (Mφ). Viability is not required, and opsonization by antibodies and/or complement does not enhance the LCL signal. As Toll-like receptors (TLR) were shown recently to mediate an oxidative burst, TLR agonists representative for pathogen-associated molecular patterns (PAMPs) were tested for their ability to elicit an oxidative burst. These included lipoteichoic acid (LTA), bacterial peptidoglycan (PGN), recombinant flagellin, CpG-containing DNA and double-stranded RNA. Only PGN and flagellin consistently elicited an LCL signal resembling that induced by LMΔ with regard to the kinetics and cell spectrum stimulated. However, flagellin was unlikely to be responsible for the LMΔ-mediated burst, as a flagellin-deficient mutant showed no decrease in LCL. We therefore assume that in LMΔ, core PGN acts as a PAMP and directly induces an oxidative burst in all phagocyte populations. We conclude that in cerebral lesions superoxide anion is generated locally by phagocytes recognizing bacterial PGN
    corecore