107 research outputs found
Frictionally modified flow in a deep ocean channel: Application to the Vema Channel
The modification of the exchange flow in a deep southern hemisphere passage, resembling the Vema Channel, by frictionally induced secondary circulation is investigated numerically. The hydrostatic primitive equation model is a two-dimensional version of the sigma-coordinate Princeton Ocean Model. The time dependent response of a stratified along-channel flow, forced by barotropic or baroclinic pressure gradients, is examined. Near the bottom, where the along-channel now is retarded, there is cross-channel Ekman nux that is associated with downwelling on the eastern side and upwelling on the western side of the channel. In the presence of stratification the cross-channel flow rearranges the density structure, which in turn acts on the along-channel velocity via the thermal wind relation. Eventually the cross-isobath Ekman flux is shut down. In the case of baroclinically driven flow of Antarctic Bottom Water through the Vema Channel the model reproduces the observed shape of the deep temperature profiles and their cross-channel asymmetry. The model offers an explanation that is alternative or supplementary to inviscid multilayer hydraulic theory that;was proposed in earlier studies. It explains the extremely thick bottom boundary layers in the center and on the western slope of the channel. The deep thermocline is spread out in the west and sharpened in the east, and the coldest water is found on the eastern side of the deep trough; The modified density field reduces the along-channel flow near the bottom and focuses it into a narrow jet on the eastern side of the channel
Recommended from our members
Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming
Precipitation and circulation patterns of Northern Hemisphere monsoons are investigated in Coupled Model Intercomparison Project phase 5 simulations for mid-Holocene and future climate scenario rcp8.5. Although both climates exhibit Northern Hemisphere warming and enhanced inter-hemispheric thermal contrast in boreal summer, changes in the spatial extent and rainfall intensity in future climate are smaller than in mid-Holocene for all Northern Hemisphere monsoons except the Indian monsoon. A decomposition of the moisture budget in thermodynamic and dynamic contributions suggests that under future global warming the weaker response of the African, Indian and North American monsoons results from a compensation between both components. The dynamic component, primarily constrained by changes in net energy input over land, determines instead most of the mid-Holocene land monsoonal rainfall response
Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period
An on-line, ensemble-based data assimilation (DA) method is performed to reconstruct the climate for 1750â1850 AD, and the performance is evaluated on large and small spatial scales. We use a low-resolution version of the Max Planck Institute for Meteorology MPI-ESM model and assimilate the PAGES 2K continental mean temperature reconstructions for the Northern Hemisphere (NH). The ensembles are generated sequentially for sub-periods based on the analysis of previous sub-periods. The assimilation has good skill for large-scale temperatures, but there is no agreement between the DA analysis and proxy-based reconstructions for small-scale temperature patterns within Europe or with reconstructions for the North Atlantic Oscillation (NAO) index. To explain the lack of added value in small spatial scales, a maximum covariance analysis (MCA) of links between NH temperature and sea level pressure is performed based on a control simulation with MPI-ESM. For annual values, winter and spring the Northern Annular Mode (NAM) is the pattern that is most closely linked to the NH continental temperatures, while for summer and autumn it is a wave-like pattern. This link is reproduced in the DA for winter, spring and annual means, providing potential for constraining the NAM/NAO phase and in turn regional temperature variability. It is shown that the lack of actual small-scale skill is likely due to the fact that the link might be too weak, as the NH continental mean temperatures are not the best predictors for large-scale circulation anomalies, or that the PAGES 2K temperatures include noise. Both factors can lead to circulation anomalies in the DA analysis that are substantially different from reality, leading to unrealistic representation of small-scale temperature variability. Moreover, we show that even if the true amplitudes of the leading MCA circulation patterns were known, there is still a large amount of unexplained local temperature variance. Based on these results, we argue that assimilating temperature reconstructions with a higher spatial resolution might improve the DA performance. © 2015 Springer-Verlag Berlin Heidelber
Influence of proxy data uncertainty on data assimilation for the past climate
Data assimilation (DA) is an emerging topic in palaeoclimatology and one of the key challenges in this field. Assimilating proxy-based continental mean temperature reconstructions into the MPI-ESM model showed a lack of information propagation to small spatial scales <cite classCombining double low line. Here, we investigate whether this lack of regional skill is due to the methodology or to errors in the assimilated reconstructions. Error separation is fundamental, as it can lead to improvements in DA methods. We address the question by performing a new set of simulations, using two different sets of target data; the proxy-based PAGES 2K reconstructions (DA-P scheme), and the HadCRUT3v instrumental observations (DA-I scheme). Again, we employ ensemble-member selection DA using the MPI-ESM model, and assimilate Northern Hemisphere (NH) continental mean temperatures; the simulated period is 1850-1949 AD. Both DA schemes follow the large-scale target and observed climate variations well, but the assimilation of instrumental data improves the performance. This improvement cannot be seen for Asia, where the limited instrumental coverage leads to errors in the target data and low skill for the DA-I scheme. No skill on small spatial scales is found for either of the two DA schemes, demonstrating that errors in the assimilated data are not the main reason for the unrealistic representation of the regional temperature variability in Europe and the NH. It can thus be concluded that assimilating continental mean temperatures is not ideal for providing skill on small spatial scales. © 2016 Author(s)
A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability
North Atlantic sea surface temperature anomalies are known to affect tropical Pacific climate variability and El Niño-Southern Oscillation (ENSO) through thermocline adjustment in the equatorial Pacific Ocean. Here coupled climate simulations featuring repeated idealized cycles of the Atlantic Multidecadal Oscillation (AMO) generated by nudging its tropical branch demonstrate that the tropical Pacific response to the AMO also entails a substantial decadally delayed component. The simulations robustly show multidecadal fluctuations in central equatorial Pacific sea surface temperatures lagging the AMO by about three decades and a subdecadal cold-to-warm transition of the tropical Pacific mean state during the AMO's cooling phase. The interplay between out-of-phase responses of seawater temperature and salinity in the western Pacific and associated density anomalies in local thermocline waters emerge as crucial factors of remotely driven multidecadal variations of the equatorial Pacific climate. The delayed AMO influences on tropical Pacific dynamics could help understanding past and future ENSO variability.North Atlantic sea surface temperature anomalies are known to affect tropical Pacific climate variability and El Niño-Southern Oscillation (ENSO) through thermocline adjustment in the equatorial Pacific Ocean. Here coupled climate simulations featuring repeated idealized cycles of the Atlantic Multidecadal Oscillation (AMO) generated by nudging its tropical branch demonstrate that the tropical Pacific response to the AMO also entails a substantial decadally delayed component. The simulations robustly show multidecadal fluctuations in central equatorial Pacific sea surface temperatures lagging the AMO by about three decades and a subdecadal cold-to-warm transition of the tropical Pacific mean state during the AMO's cooling phase. The interplay between out-of-phase responses of seawater temperature and salinity in the western Pacific and associated density anomalies in local thermocline waters emerge as crucial factors of remotely driven multidecadal variations of the equatorial Pacific climate. The delayed AMO influences on tropical Pacific dynamics could help understanding past and future ENSO variability. © 2016. American Geophysical Union. All Rights Reserved
Clarifying the Relative Role of Forcing Uncertainties and InitialâCondition Unknowns in Spreading the Climate Response to Volcanic Eruptions
Radiative forcing from volcanic aerosol impacts surface temperatures; however, the background climate state also affects the response. A key question thus concerns whether constraining forcing estimates is more important than constraining initial conditions for accurate simulation and attribution of posteruption climate anomalies. Here we test whether different realistic volcanic forcing magnitudes for the 1815 Tambora eruption yield distinguishable ensemble surface temperature responses. We perform a cluster analysis on a superensemble of climate simulations including three 30âmember ensembles using the same set of initial conditions but different volcanic forcings based on uncertainty estimates. Results clarify how forcing uncertainties can overwhelm initialâcondition spread in boreal summer due to strong direct radiative impact, while the effect of initial conditions predominate in winter, when dynamics contribute to large ensemble spread. In our setup, current uncertainties affecting reconstructionâsimulation comparisons prevent conclusions about the magnitude of the Tambora eruption and its relation to the âyear without summer.
Ocean Model Formulation Influences Transient Climate Response
The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI-CM) compared to the Max Planck Institute Earth System Model (MPI-ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI-CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere-land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI-M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice-ocean model developed at MPI-M and the FESOM sea ice-ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI-CM simulations show stronger surface heating than MPI-ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI-CM model configurations compared to MPI-ESM model configurations in the high latitudes. Weaker vertical mixing in AWI-CM model configurations compared to MPI-ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI-CM model configurations and the presence of a warming hole in MPI-ESM model configurations. All these differences occur largely independent of the considered model resolutions
Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection
Northern Hemisphere (NH) climate has experienced various coherent wintertime multidecadal climate trends in stratosphere, troposphere, ocean, and cryosphere. However, the overall mechanistic framework linking these trends is not well established. Here we show, using long-term transient forced coupled climate simulation, that large parts of the coherent NH-multidecadal changes can be understood within a damped coupled stratosphere/troposphere/ocean-oscillation framework. Wave-induced downward propagating positive stratosphere/troposphere-coupled Northern Annular Mode (NAM) and associated stratospheric cooling initiate delayed thermohaline strengthening of Atlantic overturning circulation and extratropical Atlantic-gyres. These increase the poleward oceanic heat transport leading to Arctic sea-ice melting, Arctic warming amplification, and large-scale Atlantic warming, which in turn initiates wave-induced downward propagating negative NAM and stratospheric warming and therefore reverse the oscillation phase. This coupled variability improves the performance of statistical models, which project further weakening of North Atlantic Oscillation, North Atlantic cooling and hiatus in wintertime North Atlantic-Arctic sea-ice and global surface temperature just like the 1950s-1970s
- âŠ