15 research outputs found

    Loss of TNR causes a nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus.

    Get PDF
    PURPOSE: TNR, encoding Tenascin-R, is an extracellular matrix glycoprotein involved in neurite outgrowth and neural cell adhesion, proliferation and migration, axonal guidance, myelination, and synaptic plasticity. Tenascin-R is exclusively expressed in the central nervous system with highest expression after birth. The protein is crucial in the formation of perineuronal nets that ensheath interneurons. However, the role of Tenascin-R in human pathology is largely unknown. We aimed to establish TNR as a human disease gene and unravel the associated clinical spectrum. METHODS: Exome sequencing and an online matchmaking tool were used to identify patients with biallelic variants in TNR. RESULTS: We identified 13 individuals from 8 unrelated families with biallelic variants in TNR sharing a phenotype consisting of spastic para- or tetraparesis, axial muscular hypotonia, developmental delay, and transient opisthotonus. Four homozygous loss-of-function and four different missense variants were identified. CONCLUSION: We establish TNR as a disease gene for an autosomal recessive nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus and highlight the role of central nervous system extracellular matrix proteins in the pathogenicity of spastic disorders

    In vitroresidual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU

    No full text
    Hyperphenylalaninemias (HPAs) are genetic diseases predominantly caused by a wide range of variants in the phenylalanine hydroxylase (PAH) gene. In vitro expression analysis of PAH variants offers the opportunity to elucidate the molecular mechanisms involved in HPAs and to clarify whether a disease-associated variant is genuinely pathogenic, while investigating the severity of a metabolic phenotype, and determining how a variant exerts its deleterious effects on the PAH enzyme. To study the effects of gene variants on PAH activity, we investigated eight variants: c.611A>G (p.Y204C), c.635T>C (p.L212P), c.746T>C (p.L249P), c.745C>T (p.L249F), c.809G>A (p.R270K), c.782G>C (p.R261P), c.587C>A (p.S196Y) and c.1139C>T (p.T380M), associated with different phenotypic groups. Transient expression of mutant full-length cDNAs in COS-7 cells yielded PAH proteins with PAH activity levels between 7% and 51% compared to the wild-type enzyme. With one exception (p.Y204C, which had no significant impact on PAH function), lower PAH activity was associated with a more severe phenotype (e.g. p.L249P with 7% PAH activity, 100% of classic PKU and no BH4 responsiveness), while higher activity correlated with milder phenotypes (e.g. p.T380M with 28% PAH activity, 97% of mild HPA and 83% of BH4 responsiveness). The results of the in vitro residual PAH activity have major implications, both for our understanding of genotype-phenotype correlations, and thereby existing inconsistencies, but also for the elucidation of the molecular basis of tetrahydrobiopterin (BH4) responsiveness

    The International Working Group on Neurotransmitter related Disorders (iNTD): A worldwide research project focused on primary and secondary neurotransmitter disorders

    Get PDF
    Contains fulltext : 165803.pdf (publisher's version ) (Open Access)INTRODUCTION: Neurotransmitters are chemical messengers that enable communication between the neurons in the synaptic cleft. Inborn errors of neurotransmitter biosynthesis, breakdown and transport are a group of very rare neurometabolic diseases resulting in neurological impairment at any age from newborn to adulthood. METHODS AND RESULTS: The International Working Group on Neurotransmitter related Disorders (iNTD) is the first international network focusing on the study of primary and secondary neurotransmitter disorders. It was founded with the aim to foster exchange and improve knowledge in the field of these rare diseases. The newly established iNTD patient registry for neurotransmitter related diseases collects longitudinal data on the natural disease course, approach to diagnosis, therapeutic strategies, and quality of life of affected patients. The registry forms the evidence base for the development of consensus guidelines for patients with neurotransmitter related disorders. CONCLUSION: The iNTD network and registry will improve knowledge and strengthen research capacities in the field of inborn neurotransmitter disorders. The evidence-based guidelines will facilitate standardized diagnostic procedures and treatment approaches

    Succinic semialdehyde dehydrogenase deficiency: In vitro and in silico characterization of a novel pathogenic missense variant and analysis of the mutational spectrum of aldh5a1

    No full text
    Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ‐amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ–hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease‐causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots

    The International Working Group on Neurotransmitter related Disorders (iNTD): A worldwide research project focused on primary and secondary neurotransmitter disorders

    No full text
    Introduction Neurotransmitters are chemical messengers that enable communication between the neurons in the synaptic cleft. Inborn errors of neurotransmitter biosynthesis, breakdown and transport are a group of very rare neurometabolic diseases resulting in neurological impairment at any age from newborn to adulthood. Methods and results The International Working Group on Neurotransmitter related Disorders (iNTD) is the first international network focusing on the study of primary and secondary neurotransmitter disorders. It was founded with the aim to foster exchange and improve knowledge in the field of these rare diseases. The newly established iNTD patient registry for neurotransmitter related diseases collects longitudinal data on the natural disease course, approach to diagnosis, therapeutic strategies, and quality of life of affected patients. The registry forms the evidence base for the development of consensus guidelines for patients with neurotransmitter related disorders. Conclusion The iNTD network and registry will improve knowledge and strengthen research capacities in the field of inborn neurotransmitter disorders. The evidence-based guidelines will facilitate standardized diagnostic procedures and treatment approaches. © 2016 The Author

    The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence

    No full text
    corecore