1,733 research outputs found

    Analysis of interface management tasks in a digital main control room

    Get PDF
    Development of digital main control rooms (MCRs) has greatly changed operating environments by altering operator tasks, and thus the unique characteristics of digital MCRs should be considered in terms of human reliability analysis. Digital MCR tasks can be divided into primary tasks that directly supply control input to the plant equipment, and secondary tasks that include interface management conducted via soft controls (SCs). Operator performance regarding these secondary tasks must be evaluated since such tasks did not exist in previous analog systems. In this paper, we analyzed SC-related tasks based on simulation data, and classified the error modes of the SCs following analysis of all operational tasks. Then, we defined the factors to be considered in human reliability analysis methods regarding the SCs; such factors are mainly related to interface management and computerized operator support systems. As these support systems function to reduce the number of secondary tasks required for SC, we conducted an assessment to evaluate the efficiency of one such support system. The results of this study may facilitate the development of training programs as well as help to optimize interface design to better reflect the interface management task characteristics of digitalized MCRs

    GPS-GLASS: Learning Nighttime Semantic Segmentation Using Daytime Video and GPS data

    Full text link
    Semantic segmentation for autonomous driving should be robust against various in-the-wild environments. Nighttime semantic segmentation is especially challenging due to a lack of annotated nighttime images and a large domain gap from daytime images with sufficient annotation. In this paper, we propose a novel GPS-based training framework for nighttime semantic segmentation. Given GPS-aligned pairs of daytime and nighttime images, we perform cross-domain correspondence matching to obtain pixel-level pseudo supervision. Moreover, we conduct flow estimation between daytime video frames and apply GPS-based scaling to acquire another pixel-level pseudo supervision. Using these pseudo supervisions with a confidence map, we train a nighttime semantic segmentation network without any annotation from nighttime images. Experimental results demonstrate the effectiveness of the proposed method on several nighttime semantic segmentation datasets. Our source code is available at https://github.com/jimmy9704/GPS-GLASS.Comment: ICCVW 202

    Feature Structure Distillation for BERT Transferring

    Full text link
    Knowledge distillation is an approach to transfer information on representations from a teacher to a student by reducing their difference. A challenge of this approach is to reduce the flexibility of the student's representations inducing inaccurate learning of the teacher's knowledge. To resolve it in BERT transferring, we investigate distillation of structures of representations specified to three types: intra-feature, local inter-feature, global inter-feature structures. To transfer them, we introduce \textit{feature structure distillation} methods based on the Centered Kernel Alignment, which assigns a consistent value to similar features structures and reveals more informative relations. In particular, a memory-augmented transfer method with clustering is implemented for the global structures. In the experiments on the nine tasks for language understanding of the GLUE dataset, the proposed methods effectively transfer the three types of structures and improve performance compared to state-of-the-art distillation methods. Indeed, the code for the methods is available in https://github.com/maroo-sky/FSDComment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    VR/AR head-mounted display system based measurement and evaluation of dynamic visual acuity

    Get PDF
    This study evaluated the dynamic visual acuity of candidates by implementing a Kingā€“Devick (K-D) test chart in a virtual reality head-mounted display (VR HMD) and an augmented reality head-mounted display (AR HMD). Hard-copy KD (HCKD), VR HMD KD (VHKD), and AR HMD KD (AHKD) tests were conducted in 30 male and female candidates in the age of 10S and 20S and subjective symptom surveys were conducted. In the subjective symptom surveys, all except one of the VHKD questionnaire items showed subjective symptoms of less than 1 point. In the comparison between HCKD and VHKD, HCKD was measured more rapidly than VHKD in all tests. In the comparison between HCKD and AHKD, HCKD was measured more rapidly than AHKD in Tests 1, 2, and 3. In the comparison between VHKD and AHKD, AHKD was measured more rapidly than VHKD in Tests 1, 2, and 3. In the correlation analyses of test platforms, all platforms were correlated with each other, except for the correlation between HCKD and VHKD in Tests 1 and 2. There was no significant difference in the frequency of errors among Tests 1, 2, and 3 across test platforms. VHKD and AHKD, which require the body to be moved to read the chart, required longer measurement time than HCKD. In the measurements of each platform, AHKD was measured closer to HCKD than VHKD, which may be because the AHKD environment is closer to the actual environment than the VHKD environment. The effectiveness of VHKD and AHKD proposed in this research was evaluated experimentally. The results suggest that treatment and training could be performed concurrently through the use of clinical test and content development of VHKD and AHKD

    miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Get PDF
    Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)

    Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    Get PDF
    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications

    Unveiling the Role of Ruthenium in Layered Sodium Cobaltite Toward High-Performance Electrode Enabled by Anionic and Cationic Redox

    Get PDF
    The effect of Ru substitution on the structure and electrochemical properties of P2-type Na0.67CoO2 is investigated. The first-discharge capacities of Na0.67CoO2 and Na0.6 [Co0.78Ru0.22]O2 materials are 128 and 163Ā mAhĀ gāˆ’1 (23.5Ā mAĀ gāˆ’1), respectively. Furthermore, the rate capability is improved due to the electro-conducting nature of Ru doping. Operando X-ray diffraction analysis reveals that the Na0.67CoO2 does not undergo a phase transition; however, multiple Na+/vacancy ordered superstructures within the P2 phase appear during Na+ extraction/insertion. In contrast, the Na0.6[Co0.78Ru0.22]O2 material undergoes a P2ā€“OP4 phase transition during desodiation, with no formation of Na+/vacancy ordering within the P2 phase. The increased discharge capacity of Na0.6[Co0.78Ru0.22]O2 is most likely associated with additional cationic Ru4+/Ru5+ redox and increased anionic O2āˆ’/(O2nāˆ’) redox participation. Combined experimental (galvanostatic cycling, X-ray absorption spectroscopy, differential electrochemical mass spectrometry) and theoretical (density functional theory calculations) studies confirm that Ru substitution provokes the oxygen-redox reaction and that partial O2 release from the oxide lattice is the origin of the reaction. The findings provide new insight for improving the electrode performance of cathode materials via 4d Ru substitution and motivate the development of a new strategy for the design of high-capacity cathode materials for sodium-ion batteries.</p

    Fabrication of a spherical inclusion phantom for validation of magnetic resonance-based magnetic susceptibility imaging

    Get PDF
    Ā© 2019 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Fabrication of a spherical multi-compartment MRI phantom is demonstrated that can be used to validate magnetic resonance (MR)-based susceptibility imaging reconstruction. The phantom consists of a 10 cm diameter gelatin sphere that encloses multiple smaller gelatin spheres doped with different concentrations of paramagnetic contrast agents. Compared to previous multi-compartment phantoms with cylindrical geometry, the phantom provides the following benefits: (1) no compartmental barrier materials are used that can introduce signal voids and spurious phase; (2) compartmental geometry is reproducible; (3) spherical susceptibility boundaries possess a ground-truth analytical phase solution for easy experimental validation; (4) spherical geometry of the overall phantom eliminates background phase due to air-phantom boundary in any scan orientation. The susceptibility of individual compartments can be controlled independently by doping. During fabrication, formalin crosslinking and water-proof surface coating effectively blocked water diffusion between the compartments to preserve the phantomā€™s integrity. The spherical shapes were realized by molding the inner gel compartments in acrylic spherical shells, 3 cm in diameter, and constructing the whole phantom inside a larger acrylic shell. From gradient echo images obtained at 3T, we verified that the phantom produced phase images in agreement with the theoretical prediction. Factors that limit the agreement include: air bubbles trapped at the gel interfaces, imperfect magnet shimming, and the susceptibility of external materials such as the phantom support hardware. The phantom images were used to validate publicly available codes for quantitative susceptibility mapping. We believe that the proposed phantom can provide a useful testbed for validation of MR phase imaging and MR-based magnetic susceptibility reconstructio

    Good Glycemic Control Is Associated with Better Survival in Diabetic Patients on Peritoneal Dialysis: A Prospective Observational Study

    Get PDF
    BACKGROUND: The effect of glycemic control after starting peritoneal dialysis (PD) on the survival of diabetic PD patients has largely been unexplored, especially in Asian population. METHODS: We conducted a prospective observational study, in which 140 incident PD patients with diabetes were recruited. Patients were divided into tertiles according to the means of quarterly HbA1C levels measured during the first year after starting PD. We examined the association between HbA1C and all-cause mortality using Cox proportional hazards models. RESULTS: The mean age was 58.7 years, 59.3% were male, and the mean follow-up duration was 3.5 years (range 0.4-9.5 years). The mean HbA1C levels were 6.3%, 7.1%, and 8.5% in the 1(st), 2(nd), and 3(rd) tertiles, respectively. Compared to the 1(st) tertile, the all-cause mortality rates were higher in the 2(nd) [hazard ratio (HR), 4.16; 95% confidence interval (CI), 0.91-18.94; pā€Š=ā€Š0.065] and significantly higher in the 3(rd) (HR, 13.16; 95% CI, 2.67-64.92; pā€Š=ā€Š0.002) tertiles (p for trendā€Š=ā€Š0.005), after adjusting for confounding factors. Cardiovascular mortality, however, did not differ significantly among the tertiles (p for trendā€Š=ā€Š0.682). In contrast, non-cardiovascular deaths, most of which were caused by infection, were more frequent in the 2(nd) (HR, 7.67; 95% CI, 0.68-86.37; pā€Š=ā€Š0.099) and the 3(rd) (HR, 51.24; 95% CI, 3.85-681.35; pā€Š=ā€Š0.003) tertiles than the 1(st) tertile (p for trendā€Š=ā€Š0.007). CONCLUSIONS: Poor glycemic control is associated with high mortality rates in diabetic PD patients, suggesting that better glycemic control may improve the outcomes of these patients
    • ā€¦
    corecore