1,440 research outputs found

    The International Charter for Human Values in Healthcare: An interprofessional global collaboration to enhance values and communication in healthcare

    Get PDF
    Objectives: The human dimensions of healthcare—core values and skilled communication necessary for every healthcare interaction—are fundamental to compassionate, ethical, and safe relationship-centered care. The objectives of this paper are to: describe the development of the International Charter for Human Values in Healthcare which delineates core values, articulate the role of skilled communication in enacting these values, and provide examples showing translation of the Charter’s values into action. Methods: We describe development of the Charter using combined qualitative research methods and the international, interprofessional collaboration of institutions and individuals worldwide. Results: We identified five fundamental categories of human values for every healthcare interaction—Compassion, Respect for Persons, Commitment to Integrity and Ethical Practice, Commitment to Excellence, and Justice in Healthcare—and delineated subvalues within each category. We have disseminated the Charter internationally and incorporated it into education/training. Diverse healthcare partners have joined in this work. Conclusion: We chronicle the development and dissemination of the International Charter for Human Values in Healthcare, the role of skilled communication in demonstrating values, and provide examples of educational and clinical programs integrating these values. Practice implications: The Charter identifies and promotes core values clinicians and educators can demonstrate through skilled communication and use to advance humanistic educational programs and practice

    The Korea–United States Air Quality (KORUS-AQ) field study

    Get PDF
    The Korea–United States Air Quality (KORUS-AQ) field study was conducted during May–June 2016. The effort was jointly sponsored by the National Institute of Environmental Research of South Korea and the National Aeronautics and Space Administration of the United States. KORUS-AQ offered an unprecedented, multi-perspective view of air quality conditions in South Korea by employing observations from three aircraft, an extensive ground-based network, and three ships along with an array of air quality forecast models. Information gathered during the study is contributing to an improved understanding of the factors controlling air quality in South Korea. The study also provided a valuable test bed for future air quality–observing strategies involving geostationary satellite instruments being launched by both countries to examine air quality throughout the day over Asia and North America. This article presents details on the KORUS-AQ observational assets, study execution, data products, and air quality conditions observed during the study. High-level findings from companion papers in this special issue are also summarized and discussed in relation to the factors controlling fine particle and ozone pollution, current emissions and source apportionment, and expectations for the role of satellite observations in the future. Resulting policy recommendations and advice regarding plans going forward are summarized. These results provide an important update to early feedback previously provided in a Rapid Science Synthesis Report produced for South Korean policy makers in 2017 and form the basis for the Final Science Synthesis Report delivered in 2020

    Limitations in representation of physical processes preven successful simulation of PM2.5 during KORUS-AQ

    Get PDF
    High levels of fine particulate matter (PM2.5) pollution in East Asia often exceed local air quality standards. Observations from the Korea United States-Air Quality (KORUS-AQ) field campaign in May and June 2016 showed that development of extreme pollution (haze) occurred through a combination of long-range transport and favorable meteorological conditions that enhanced local production of PM2.5. Atmospheric models often have difficulty simulating PM2.5 chemical composition during haze, which is of concern for the development of successful control measures. We use observations from KORUS-AQ to examine the ability of the GEOS-Chem chemical transport model to simulate PM2.5 composition throughout the campaign and identify the mechanisms driving the pollution event. In the surface level, the model underestimates campaign average sulfate aerosol by −64 % but overestimates nitrate aerosol by 36 %. The largest underestimate in sulfate occurs during the pollution event in conditions of high relative humidity, where models typically struggle to generate the high concentrations due to missing heterogeneous chemistry in aerosol liquid water in the polluted boundary layer. Hourly surface observations show that the model nitrate bias is driven by an overestimation of the nighttime peak. In the model, nitrate formation is limited by the supply of nitric acid, which is biased by +100 % against aircraft observations. We hypothesize that this is due to a missing sink, which we implement here as a factor of five increase in dry deposition. We show that the resulting increased deposition velocity is consistent with observations of total nitrate as a function of photochemical age. The model does not account for factors such as the urban heat island effect or the heterogeneity of the built-up urban landscape resulting in insufficient model turbulence and surface area over the study area that likely results in insufficient dry deposition. Other species such as NH3 could be similarly affected but were not measured during the campaign. Nighttime production of nitrate is driven by NO2 hydrolysis in the model, while observations show that unexpectedly elevated nighttime ozone (not present in the model) should result in N2O5 hydrolysis as the primary pathway. The model is unable to represent nighttime ozone due to an overly rapid collapse of the afternoon mixed layer and excessive titration by NO. We attribute this to missing nighttime heating driving deeper nocturnal mixing that would be expected to occur in a city like Seoul. This urban heating is not considered in air quality models run at large enough scales to treat both local chemistry and long-range transport. Key model failures in simulating nitrate, mainly overestimated daytime nitric acid, incorrect representation of nighttime chemistry, and an overly shallow and insufficiently turbulent nighttime mixed layer, exacerbate the model’s inability to simulate the buildup of PM2.5 during haze pollution. To address the underestimate in sulfate most evident during the haze event, heterogeneous aerosol uptake of SO2 is added to the model which previously only considered aqueous production of sulfate from SO2 in cloud water. Implementing a simple parameterization of this chemistry improves the model abundance of sulfate but degrades the SO2 simulation implying that emissions are underestimated. We find that improving model simulations of sulfate has direct relevance to determining local vs. transboundary contributions to PM2.5. During the haze pollution event, the inclusion of heterogeneous aerosol uptake of SO2 decreases the fraction of PM2.5 attributable to long-range transport from 66 % to 54 %. Locally-produced sulfate increased from 1 % to 46 % of locally-produced PM2.5, implying that local emissions controls would have a larger effect than previously thought. However, this additional uptake of SO2 is coupled to the model nitrate prediction which affects the aerosol liquid water abundance and chemistry driving sulfate-nitrate-ammonium partitioning. An additional simulation of the haze pollution with heterogeneous uptake of SO2 to aerosol and simple improvements to the model nitrate simulation results in 30 % less sulfate due to 40 % less nitrate and aerosol water, and results in an underestimate of sulfate during the haze event. Future studies need to better consider the impact of model physical processes such as dry deposition and boundary layer mixing on the simulation of nitrate and the effect of improved nitrate simulations on the overall simulation of secondary inorganic aerosol (sulfate+nitrate+ammonium) in East Asia. Foreign emissions are rapidly changing, increasing the need to understand the impact of local emissions on PM2.5 in South Korea to ensure continued air quality improvements

    Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm

    Get PDF
    Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times. The fast OJIP fluorescence rise curve was measured immediately after light exposure and after recovery during 1 day in laboratory room light. A fluorescence induction algorithm has been used for resolution and analysis of these curves. This algorithm includes photochemical and photo-electrochemical quenching release components and a photo-electrical dependent IP-component. The analysis revealed a substantial suppression of the photo-electrochemical component (even complete in the resistant biotype), a partial suppression of the photochemical component and a decrease in the fluorescence parameter Fo after high light. These effects were recovered after 1 day in the indoor light

    Detection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology

    Get PDF
    Background: ALK-rearranged lung cancers exhibit specific pathologic and clinical features and are responsive to anti-ALK therapies. Therefore, the detection of ALK-rearrangement is fundamental for personalized lung cancer therapy. Recently, new molecular techniques, such as NanoString nCounter, have been developed to detect ALK fusions with more accuracy and sensitivity. Methods: In the present study, we intended to validate a NanoString nCounter ALK-fusion panel in routine biopsies of FFPE lung cancer patients. A total of 43 samples were analyzed, 13 ALK-positive and 30 ALK-negative, as previously detected by FISH and/or immunohistochemistry. Results: The NanoString panel detected the presence of the EML4-ALK, KIF5B-ALK and TFG-ALK fusion variants. We observed that all the 13 ALK-positive cases exhibited genetic aberrations by the NanoString methodology. Namely, six cases (46.15%) presented EML-ALK variant 1, two (15.38%) presented EML-ALK variant 2, two (15.38%) presented EML-ALK variant 3a, and three (23.07%) exhibited no variant but presented unbalanced expression between 5'/3' exons, similar to other positive samples. Importantly, for all these analyses, the initial input of RNA was 100 ng, and some cases displayed poor RNA quality measurements. Conclusions: In this study, we reported the great utility of NanoString technology in the assessment of ALK fusions in routine lung biopsies of FFPE specimens.This study was partially funded by FINEP (MCTI/FINEP/MS/SCTIE/DECIT), Brazil. BIOPLAT (1302/13).info:eu-repo/semantics/publishedVersio

    Molecular Characterization of NRXN1 Deletions from 19,263 Clinical Microarray Cases Identifies Exons Important for Neurodevelopmental Disease Expression

    Get PDF
    PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P \u3c 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3\u27 end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5\u27 NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5\u27 end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61
    corecore