902 research outputs found

    Tetramethyl-O-scutellarin isolated from peels of immature Shiranuhi fruit exhibits anti-inflammatory effects on LPSinduced RAW264.7 cells

    Get PDF
    Purpose: To investigate the anti-inflammatory activity of the ethanol extract of the immature fruit of a citrus, Shiranuhi, and to identify the active ingredient.Methods: The immature Shiranuhi peel was extracted with 80 % ethanol, and the extract was fractionated with solvents (n-hexane, ethyl acetate and n-butanol) to afford the corresponding fractions and water residue. Among them, the EtOAc-soluble portion was subjected to medium pressure liquid chromatography (MPLC) over a reversed-phase SiO2 column to give compound 1. The isolated compound was identified based on the proton and carbon nuclear magnetic resonance (NMR) spectra. The release of nitric oxide, prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 secreted by mouse macrophages was measured using RAW264.7 cell culture supernatant.Results: Shiranuhi (Korean name, Hallabong) is an important citrus species cultivated in Jeju Island, Korea. A polymethoxyflavonoid (PMF), tetramethyl-O-scutellarin (1), was isolated from the peels of immature Shiranuhi fruit. Upon the evaluation of anti-inflammatory effects, the flavonoid 1 decreased the nitric oxide production in macrophage cells with high efficiency, viz, 50 % inhibition concentration, IC50 of 57.4 μM. Subsequent studies demonstrated that PMF 1 effectively inhibited the generation of PGE2, TNF-α, IL-1β, and IL-6 cytokine in a dose-dependent manner.Conclusion: Tetramethyl-O-scutellarin (1) has been successfully isolated from Shiranuhi species for the first time. Thus, Shiranuhi fruit peel extract containing PMF 1 can potentially be applied as an antiinflammatory ingredient in food or cosmetic industries.Keywords: Shiranuhi fruit, Nitric oxide, Tetramethyl-O-scutellarin, Anti-inflammator

    Social-Loc: Improving indoor localization with social sensing

    Get PDF
    Location-based services, such as targeted advertisement, geo-social networking and emergency services, are becoming in-creasingly popular for mobile applications. While GPS pro-vides accurate outdoor locations, accurate indoor localiza-tion schemes still require either additional infrastructure support (e.g., ranging devices) or extensive training before system deployment (e.g., WiFi signal fingerprinting). In or-der to help existing localization systems to overcome their limitations or to further improve their accuracy, we propose Social-Loc, a middleware that takes the potential locations for individual users, which is estimated by any underlying indoor localization system as input and exploits both so-cial encounter and non-encounter events to cooperatively calibrate the estimation errors. We have fully implemented Social-Loc on the Android platform and demonstrated its performance on two underlying indoor localization systems: Dead-reckoning and WiFi fingerprint. Experiment results show that Social-Loc improves user’s localization accuracy of WiFi fingerprint and dead-reckoning by at least 22 % and 37%, respectively. Large-scale simulation results indicate Social-Loc is scalable, provides good accuracy for a long du-ration of time, and is robust against measurement errors

    Acanthopanax koreanum Fruit Waste Inhibits Lipopolysaccharide-Induced Production of Nitric Oxide and Prostaglandin E2 in RAW 264.7 Macrophages

    Get PDF
    The Acanthopanax koreanum fruit is a popular fruit in Jeju Island, but the byproducts of the alcoholic beverage prepared using this fruit are major agricultural wastes. The fermentability of this waste causes many economic and environmental problems. Therefore, we investigated the suitability of using A. koreanum fruit waste (AFW) as a source of antiinflammatory agents. AFWs were extracted with 80% EtOH. The ethanolic extract was then successively partitioned with hexane, CH2Cl2, EtOAc, BuOH, and water. The results indicate that the CH2Cl2 fraction (100 μg/mL) of AFW inhibited the LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 cells by 79.6% and 39.7%, respectively. These inhibitory effects of the CH2Cl2 fraction of AFWs were accompanied by decreases in the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and iNOS and COX-2 mRNA in a dose-dependent pattern. The CH2Cl2 fraction of AFWs also prevented degradation of IκB-α in a dose-dependent manner. Ursolic acid was identified as major compound present in AFW, and CH2Cl2 extracts by high performance liquid chromatography (HPLC). Furthermore using pure ursolic acid as standard and by HPLC, AFW and CH2Cl2 extracts was found to contain 1.58 mg/g and 1.75 mg/g, respectively. Moreover, we tested the potential application of AFW extracts as a cosmetic material by performing human skin primary irritation tests. In these tests, AFW extracts did not induce any adverse reactions. Based on these results, we suggest that AFW extracts be considered possible anti-inflammatory candidates for topical application

    Research on a Denial of Service (DoS) Detection System Based on Global Interdependent Behaviors in a Sensor Network Environment

    Get PDF
    This research suggests a Denial of Service (DoS) detection method based on the collection of interdependent behavior data in a sensor network environment. In order to collect the interdependent behavior data, we use a base station to analyze traffic and behaviors among nodes and introduce methods of detecting changes in the environment with precursor symptoms. The study presents a DoS Detection System based on Global Interdependent Behaviors and shows the result of detecting a sensor carrying out DoS attacks through the test-bed

    Improvement in the hygroscopicity of inorganic binder through a dual coating process

    Get PDF
    The use of an anti-absorbent is proposed in this work to reduce the hygroscopicity of the inorganic binder in the casting mold, in which the anti-absorbent is coated on the mold prepared with an inorganic binder. Three types of polymers were used to select material with optimal water resistance. Polystyrene (PS) and polyvinyl alcohol (PVA) were used as a water-insoluble polymer and water-soluble polymer, respectively. In addition, polyurethane (PU) prepolymer has intermediate properties between PS and PVA. PVA and PU prepolymer were used for comparative testing with PS. For this testing process, the prepared green body was dipped into a solution of inorganic binder precursor mixed with tetraethyl orthosilicate (TEOS, SiO2 precursor) and sodium methoxide (NaOMe, Na2O precursor), and then dipped into a solution of coating reagent after a drying process. Thus, these series of coating processes in a green body is called a dual coating process. Finally the sample was heat-treated at 1000 °C to generate a glass phase by an organic–inorganic conversion process. In the sample prepared with PS, the highest contact angle and a high firing strength were exhibited, independent of polymer concentration, while the sample coated with PVA showed lower green and firing strengths. When prepolymer, PU, was applied, the green strength was remarkably improved, showing lower firing strength compared with that of PS. The green and firing strengths were optimized through the dual coating process with PS. Moreover, the moisture-proof effect of the dual coating process was verified through the moisture steam test

    Structure stability evaluation of offshore heave compensator using multi-body dynamics analysis method

    Get PDF
    Heave compensator attenuate vessel heave motion during drilling operation of drillship. Heave compensator functions as damping form motion of drillship, such as principle spring of suspension system. The load transfers on the parts of heave compensator. Stress and deformation of all parts is evaluated to diagnose the stability of the compensator. This study makes a decision on the safety of structure. Results of analysis confirm the structure stability of heave compensator for simulation. This result can be used as data for structural analysis to determine safety of a structure

    Does the Kyphotic Change Decrease the Risk of Fall?

    Get PDF
    ObjectivesFalls are a major problem in the elderly. Age-related degeneration of the human balance system increases the risk of falls. Kyphosis is a common condition of curvature of the upper spine in the elderly and its development occurs through degenerative change. However, relatively little is known about the effect of kyphotic changes on balance in the elderly. The aim of this study is to investigate the influence of kyphosis on the balance strategy through use of the motor control test (MCT) in computerized dynamic posturography.MethodsFifty healthy subjects who were not affected by other medical disorders that could affect gait or balance were enrolled in the study. By simulation of kyphotic condition through change of the angles of the line connecting the shoulder to the hip and the ankle axis by approximately 30°, the latency and amplitude of the MCT were measured in upright and kyphotic condition.ResultsIn the kyphotic condition, latency was shortened in backward movement. In forward movement, latency was shortened only in large stimulation. The amplitude in forward movement was decreased in kyphotic condition. However, the change of amplitude was not significant in large intensity backward movement in the same condition.ConclusionKyphotic condition decreases the latency of MCT, especially in backward movement. These findings imply that kyphotic condition may serve as a protective factor against falls

    Whole-liver radiotherapy for end-stage colorectal cancer patients with massive liver metastases and advanced hepatic dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate whether whole-liver radiotherapy (RT) is beneficial in end-stage colorectal cancer with massive liver metastases and severe hepatic dysfunction.</p> <p>Methods</p> <p>Between June 2004 and July 2008, 10 colorectal cancer patients, who exhibited a replacement of over three quarters of their normal liver by metastatic tumors and were of Child-Pugh class B or C in liver function with progressive disease after undergoing chemotherapy, underwent whole-liver RT. RT was administered using computed tomography-based three-dimensional planning and the median dose was 21 Gy (range, 21-30) in seven fractions. Improvement in liver function tests, defined as a decrease in the levels within 1 month after RT, symptom palliation, toxicity, and overall survival were analyzed retrospectively.</p> <p>Results</p> <p>Levels of alkaline phosphatase, total bilirubin, aspartate transaminase, and alanine transaminase improved in 8, 6, 9, and all 10 patients, respectively, and the median reduction rates were 42%, 68%, 50%, and 57%, respectively. Serum carcinoembryonic antigen level decreased after RT in three of four assessable patients. For all patients, pain levels decreased and acute toxicity consisted of nausea/vomiting of grade ≤ 2. Further chemotherapy became possible in four of 10 patients. Mean survival after RT was 80 ± 80 days (range, 20-289); mean survival for four patients who received post-RT chemotherapy was 143 ± 100 days (range, 65-289), versus 38 ± 16 days (range, 20-64) for the six patients who did not receive post-RT chemotherapy (<it>p </it>= 0.127).</p> <p>Conclusions</p> <p>Although limited by small case number, this study demonstrated a possible role of whole-liver RT in improving hepatic dysfunction and delaying mortality from hepatic failure for end-stage colorectal cancer patients with massive liver metastases. Further studies should be followed to confirm these findings.</p

    Versatile spaceborne photonics with chalcogenide phase-change materials

    Full text link
    Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.Comment: 16 pages, 4 figure
    corecore