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Abstract 

The use of an anti-absorbent is proposed in this work to reduce the hygroscopicity of the 

inorganic binder in the casting mold, in which the anti-absorbent is coated on the mold 

prepared with an inorganic binder. Three types of polymers were used to select material with 

optimal water resistance. Polystyrene (PS) and polyvinyl alcohol (PVA) were used as a water-

insoluble polymer and water-soluble polymer, respectively. In addition, polyurethane (PU) 

prepolymer has intermediate properties between PS and PVA. PVA and PU prepolymer were 

used for comparative testing with PS. For this testing process, the prepared green body was 

dipped into a solution of inorganic binder precursor mixed with tetraethyl orthosilicate (TEOS, 

SiO2 precursor) and sodium methoxide (NaOMe, Na2O precursor), and then dipped into a 

solution of coating reagent after a drying process. Thus, these series of coating processes in a 

green body is called a dual coating process. Finally the sample was heat-treated at 1000 °C to 

generate a glass phase by an organic–inorganic conversion process. In the sample prepared with 

PS, the highest contact angle and a high firing strength were exhibited, independent of polymer 

concentration, while the sample coated with PVA showed lower green and firing strengths. 

When prepolymer, PU, was applied, the green strength was remarkably improved, showing 

lower firing strength compared with that of PS. The green and firing strengths were optimized 

through the dual coating process with PS. Moreover, the moisture-proof effect of the dual 

coating process was verified through the moisture steam test.  
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1. Introduction 

In a conventional sand-casting process, the molds are manufactured by mixing ceramic 

materials and organic binders, and this process is widely used in the foundry industry because 

of the simple manufacturing process and low production cost [1–3]. However, it is difficult to 

form complex products since the organic binders are decomposed and defects in the mold are 

generated during casting at high temperatures [4–7]. To solve these problems, an organic–

inorganic binder conversion process has been proposed [8]. In this conversion process, the 

surface of the starting powder is coated with an organic binder and an inorganic binder is then 

coated on the organic binder. Thereafter, when the heat-treatment process is performed, the 

organic binder is volatilized and a void is formed; then, the inorganic binder that has been 

vitrified to have fluidity is replaced by the organic binder so the strength is expressed. 

Generally, the Na2O precursor (NaOMe) and the silica precursor (TEOS) are used as the 

inorganic binder, and the coating is performed through hydrolysis and condensation (sol–gel 

reaction) [9–11].The, the NaOH converted from NaOMe modifies the network structure of the 

silica during the heat treatment. However, it absorbs water in the air before the heat treatment 

[12]. In particular, the absorption property of NaOH significantly affects firing strength due to 

the whirlwind vaporization phenomenon of the water faded by NaOH during the heat treatment.  

Therefore, in this study, a new coating process using an anti-absorbent was applied to 

control the hygroscopicity of the inorganic binder. Three kinds of polymers were used: 

polystyrene (PS) as a water-insoluble polymer, polyvinyl alcohol (PVA) as a water-soluble 

polymer, and polyurethane (PU) prepolymer with intermediate properties [13,14,15]. In 

particular, PS and PVA were used to investigate the properties of the mold sample on the water-

insoluble and water-soluble polymers, respectively. In addition, PU prepolymer was used to 

evaluate the effect of a liquid polymer precursor instead of a hard-to-handle polymer like PVA. 

Furthermore, PU is less hydrophilic than PVA in molecular structure. The green body was 
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coated with inorganic binders and then recoated with polymers, comprising a dual coating 

process. After coating with the polymers, the contact angle was measured to confirm the 

hydrophobic property the surface of the mold sample, and the strengths of samples before and 

after heat treatment were measured. Then, the moisture steam test was performed in order to 

confirm the water resistance of the mold sample in a high temperature and high humidity 

environments. 

 

2. Experimental procedure 

2.1. Starting materials and sample preparation 

Ceramic bead (Cerabead; Itochu, Osaka, Japan) composed of a mullite (3Al2O3∙2SiO2) 

was used as a starting powder, and the green body was prepared through a compression 

process using the bead powder pre-treated with a resin-coated sand process. The inorganic 

binder was composed of tetraethyl orthosilicate (TEOS; Sigma-Aldrich Korea, Yong-in, 

Republic of Korea) as a silicon dioxide (SiO2) precursor and sodium methoxide (NaOMe; 

Sigma-Aldrich Korea, Yong-in, Republic of Korea) as a sodium oxide (Na2O) precursor. As 

the water-insoluble polymer, PS (Sigma-Aldrich Korea, Yong-in, Republic of Korea) was 

used as an anti-absorbent. PS is relatively easy to handle and does not decompose at a 

dewaxing temperature (200 °C) and has excellent mechanical properties [13,14,15]. 

Therefore, general-purpose PS represented by hydrophobic polymer was selected as an anti-

absorbent. For, comparison, PVA (Sigma-Aldrich Korea, Yong-in, Republic of Korea) was 

also used, because it is a water-soluble binder.  

PU prepolymer (Sigma-Aldrich Korea, Yong-in, Republic of Korea), having a 

relatively long chain polymer, was used to evaluate effect of water resistance on the anti-

absorption and strength of the mold sample [13,16]. Experiments were performed according 

to the composition of the inorganic binders that showed the best properties in previous studies 
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as a function of the viscosity of polymer solutions (PVA, PS, and PU prepolymer) [17, 18]. 

Table 1 shows the viscosity and molar concentrations with the type of polymer solution used 

in this work, and the molecular structure of the polymer used is shown in Fig. 1. The green 

body produced by the compression process (Jinsung Precision Metal Co., Ltd., Busan, Korea) 

was dipped into the solution of the inorganic binder and dried at 80 °C for 1 h. It was then 

coated with the inorganic binder and redipped into the polymer solution followed by drying at 

80 °C for 1 h or more. The dried sample was heat-treated at 1000 °C for 1 h to vitrify the 

inorganic binder. In this process, the inorganic binder moves by capillary action in the space 

created by the decomposition of the organic binder (resin). Thus, the glass phase is generated 

on the surface and interface of the particles. Figure 2 presents a schematic diagram of the 

preparation of the ceramic mold samples using each polymer solution. Each polymer solution 

was coated once. 

 

2.2 Characterization 

A tuning fork vibration-type viscometer (Model SV-10, AND, Gunpo, Korea) was used 

to measure the viscosity according to the concentration of the anti-absorbent. The solution 

with each anti-absorbent of 35 ml was placed in a special container at room temperature and 

measured for about 15 s. The functional groups of the anti-absorbent were analyzed using a 

Fourier-transform infrared spectrophotometer (FT/IR-6300, JASCO, Japan), and each sample 

was analyzed at wavelengths from 400 to 4000 (cm–1). The contact angle was then measured 

using a contact angle analyzer (Phoenix 300 Touch; Surface Electro Optics Co. Ltd., Suwon, 

Korea) after dropping the droplet onto the surface of the prepared sample. The microstructure 

of the mold sample was then examined using a scanning electron microscope (SEM, Model 

JSM-5610; JEOL, Tokyo, Japan) to observe the shape of the glass phase generated on the 

particles. Then, the fracture strengths of samples before and after heat treatment were 
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measured using a universal testing machine (Instron 5566; Instron Corp., Norwood, MA, 

USA) in a three-point bending mode at a rate of 0.5 mm/min. The tests were performed at 

room temperature, and five runs were performed to determine the standard deviation of the 

fracture strength. The moisture steam test was conducted to confirm the hydrophobic 

property of the sample using dewaxing equipment (Jinsung Precision Metal Co., Ltd., Busan) 

at 170°C and 7 kg / cm3 for 20–30 min. 

 

3. Results and discussion 

    The FT-IR spectra of the polymer materials, PVA, PU, and PS, are shown in Fig. 3. PVA 

has the specific characteristic peak of OH at 3428 cm–1 (Fig. 3(a)) [19-22]. In Fig. 3(b), the 

PU peak shows two characteristic bands at 2338 cm–1 and 1670 cm–1, which are assigned to 

N=C=O by the urethane group and the C=O peak by the carboxyl group, respectively [23]. 

The aromatic peak of PS occurs at 1449 cm–1 (Fig. 3 (c)) [24]. Similarly, each polymer shows 

unique molecular characteristics with exclusive peaks. In addition, in PVA, the OH group is 

present in every two carbon atoms, which has a large hydrophilic property. However, the 

urethane group in the PU prepolymer is less hydrophilic than PVA since it has one urethane 

group per 1000 molecular weight (Fig. 1) [25]. 

The molar concentration of each polymer solution and viscosity are shown in Table 1. 

Among the three polymers, PS and PVA in the solid phase dissolved in benzene and water, 

respectively, and PU was diluted in water. Therefore, the molar concentration of PVA is high. In 

other words, the PU prepolymer has a hydrophilic property while the PU polymer is a water-

insoluble polymer due to the NCO-functional group remaining in the middle of the chain. 

However, the hydrophilicity of PU should be lower than the PVA with a OH-group per 

monomer. The contact angle was measured with water droplets to investigate the effect of 

polymers used for the protection of the inorganic binder from the moisture in the air, and the 
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results are shown in Fig. 4. Overall, as the viscosity of the polymer solution increased, a high 

contact angle was measured by the high concentration of solutes. In addition, PS with a 

hydrophobic property naturally showed the highest contact angle, despite the low molar 

concentration. In addition, the PU prepolymer showed a higher contact angle than PVA caused 

by the relatively low hydrophilicity given the molecular structure. As a result, the hydrophobic 

effect of the mold sample coated with polymer was highest in the PS and lowest in PVA.  

 To confirm the hydrophobic effect of the applied polymers, the green and firing 

strengths of the samples prepared according to the type and concentration of the polymer were 

measured (Fig. 5). The results show that the strengths of sample prepared by the conventional 

process were about 6 and 10 MPa before and after heat treatment, respectively. However, when 

the PVA was applied, the green and firing strengths of the samples showed lower values than 

those by the conventional process, independent of the concentration of PVA. The lower 

strengths resulted from the hydrophilicity of the sample being further increased by coating the 

PVA on the surface of the green body. The inorganic binder is present as SiO2 and NaOH after 

drying process. NaOH is dissolved into the PVA solution because of its highly hydrophilic 

property. And then, the water entrapped by the PVA rapidly vaporizes during the heat treatment 

and adversely affects the conversion of the inorganic binder to the glass phase. This is because 

lowering the Na content increases the melting point of the glass which results in reducing the 

glass transition efficiency at 1000 °C. Therefore, as the concentration of the PVA solution 

increased, the firing strength gradually decreased. In the mold sample prepared with PS, the 

green and firing strengths were increased due to the higher hydrophobicity of PS compared 

with that of PVA and the conventional process, which showed the highest firing strength. In 

addition, the strengths were slightly increased with an increased concentration of PS within an 

error range [14]. The maximum green and firing strengths were determined to be 7.5 ± 0.5 and 

13.0 ± 1.6 MPa. As a result, in the case of the sample prepared with the PU prepolymer, the 
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green strength was remarkably increased, showing the highest value of 13.0 ± 0.9 MPa in 

sample III. This result means that the green strength is affected more by the entanglement 

between the chains than by the molecular property of the polymer [26–28]. However, the firing 

strength was only slightly improved due to the water-soluble property of the PU prepolymer, 

with the maximum strength of 8.4 ± 0.5 MPa in sample III. The strengths were also modestly 

increased with an increased concentration of PU prepolymer. As a result, the polymer with a 

hydrophobic nature is efficient in improving the firing strength due to the increased conversion 

efficiency to the glass phase of the inorganic binder during heat treatment.  

 Based on the results of these experiments, the coating process that combined PS and 

PU was applied to improve the green and firing strengths (Fig. 2, process D). The process 

applied in this work is a dual process because it uses an inorganic binder and a polymer. 

Therefore, even if two polymers of PU and PS are used, process D is also regarded as a dual 

process. The contact angle and strength were then measured for the sample prepared through 

process D (Fig. 6). The sample showed a slightly higher contact angle (Fig. 6(a)) than that 

using a single polymer (Fig. 4), indicating that the hydrophobic effect of the sample prepared 

with the double polymer was better increased. The PS and PU coating layers played the role as 

an anti-absorbent, so the hydrophobic effect was increased with increasing the times of coating. 

The green and firing strengths were determined to be 11.7 ± 0.8 and 11.5 ± 1.6 MPa, 

respectively. Therefore, both strengths could be optimized using the combined polymers, 

although the strengths were slightly lower than the green strength of the PU prepolymer and the 

firing strength of the PS.  

 To investigate the relationship between the strength and the microstructure, the fracture 

surfaces of the samples with the highest polymer concentration (sample type III) were observed 

(Fig. 7). In the thickness and range of the glass phase generated at the interface of particles 

(dotted arrows), the sample coated with PVA with the lowest firing strength had relatively thin 



9 
 

thickness and narrow range compared with other samples. In addition, in the case of PS with 

the highest firing strength, the sample had a higher thickness and the glass phase was uniformly 

formed, with the formation of the glass phase being clearly visible in the microstructure (Fig. 7 

(b)). When PU was single-coated, the reaction layer was thicker than PVA, but relatively 

thinner and narrower compared with that of PS, resulting in intermediate firing strength (Fig. 7 

(c)). The results also show that the reaction layer was considerably wide in the case of the 

combined coating with PS and PU, but the firing strength was lower than that of PS because the 

glass phase did not uniformly form on the surface (solid arrows) as PS (Fig. 7 (d)). 

 The moisture steam test using the dewaxing equipment is shown in Fig. 8, confirming 

the hydrophobic effect of the samples (sample type III) prepared through processes A, B, C, and 

D. The samples remained without shape variation despite being in relatively severe 

environments. However, as shown in the results of the fracture strength, the strength of the 

sample prepared by process C was reduced and application would be difficult in the actual 

casting process because the mold requires the strength to withstand the self-weight of the 

molten melt during the casting. Therefore, using the composite coating process with PS and the 

PU prepolymer is preferable to increase the moisture absorption effect and the strength of the 

casting mold.  

 

4. Conclusions 

A dual coating process that recoats the polymer on the inorganic binder was developed to 

reduce the hygroscopicity of the inorganic binder, which adversely effects strength by 

decomposing the inorganic binder during heat treatment. We used three types of polymers— 

PVA as a water-soluble polymer, PS as a water-insoluble polymer, and PU prepolymer as a 

precursor—to improve the hydrophobic effect of the mold. The sample prepared using PS 

showed the highest hydrophobic effect and that using PVA showed the lowest, as proven by the 
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contact angle measured. This effect is due to the difference between the hydrophobicity and 

hydrophilicity of PS and PVA molecules, respectively. In addition, with respect to fracture 

strength, the sample coated with PS showed the highest firing strength due to the reduced 

hygroscopicity. However, in terms of green strength, the sample coated with PU prepolymer 

showed the highest strength, indicating that the green samples are more affected by the 

entanglement between chains. In the coating process using combined polymers of PU 

prepolymer and PS, reasonable green and firing strengths were obtained to produce a desirable 

casting mold. In addition, even if the mold is stored for a predetermined time before heat 

treatment, the green and firing strengths can be maintained with respect to moisture. 
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Table caption 

Table 1. Viscosity and molar concentration with the three types of polymers 

 

Figure captions 

Fig. 1. Molecular structure of polymers used in this work. (a) PVA, (b) PU, and (c) PS. 

Fig. 2. Schematic diagram of coating processes using the three polymers for improving the 

hygroscopicity of the inorganic binder. 

Fig. 3. FT-IR spectra of the three polymers. (a) PVA, (b) PU, and (c) PS. 

Fig. 4. The contact angle with the three types and concentrations of polymers. (a) PVA, (b) PS, 

and (c) PU. Each number (I, II, III) indicates the molar concentration of polymer sample types 

shown in Table 1. 

Fig. 5. Fracture strength of the three polymers. (a) PVA, (b) PS, and (c) PU. Dotted and solid 

lines respectively indicate strength values before and after heat treatment of samples prepared 

through the conventional process without anti-absorbent. 

Fig. 6. Contact angle and fracture strength of samples prepared through process D. (a) Contact 

angle and (b) fracture strength. 

Fig. 7. Fracture images after the strength test and microstructures of samples prepared with the 

four processes: (a) process A, (b) process B, (c) process C, and (d) process D. Each number 

indicates the fracture surface image before and after heat treatment. The top and bottom 

microstructures in each number are the inside and the edge of samples, respectively. Dotted and 

solid arrows indicate the glass phase generated at the interface of particles and on the surface of 

particles, respectively. 

Fig. 8. Moisture-proof test in the dewaxing condition for sample type III prepared with 

processes A, B, C and D shown in Fig. 1.: (a) Dewaxing apparatus, (b) sample with process A, 
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(c) sample with process B, (d) sample with process C, and (e) sample with process D. 
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Table 1. Viscosity and molar concentration with the three types of polymers 

Type of polymer Sample  
type 

Solvent 
wt%(mol%) 

Polymer 
wt%(mol%) 

Viscosity 
(mPa∙S) 

A. Polyvinyl alcohol 
(PVA) 

I 98.9 (99.98) [water] 1.04 (1.79×10–4) 1.37 

II 97.9 (99.96) [water] 2.05 (3.63×10–4) 3.13 

III 95.9 (99.93) [water] 4.01 (7.25×10–4) 10.5 

B. Polystyrene 
(PS) 

I 96.62 (99.98) [benzene] 3.38 (0.02) 3.76 

II 93.46 (99.96) [benzene] 6.54 (0.04) 10.6 

III 87.72 (99.93) [benzene] 12.28 (0.07) 29.7 

C. Polyurethane (PU) 
prepolymer 

I 50 (95.19) [water] 50 (4.81) 11.5 

II 40 (92.89) [water] 60 (7.11) 23.0 

III 33.33 (91.13) [water] 66.67 (8.87) 49.2 
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Fig. 1. Molecular structure of polymers used in this work. (a) PVA, (b) PU, and (c) PS. 
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Fig. 2. Schematic diagram of coating processes using the three polymers for improving the 

hygroscopicity of the inorganic binder. 

 

 

Fig. 3. FT-IR spectra of the three polymers. (a) PVA, (b) PU, and (c) PS. 
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Fig. 4. The contact angle with the three types and concentrations of polymers. (a) PVA, (b) PS, 

and (c) PU. Each number (I, II, III) indicates the molar concentration of polymer sample types 

shown in Table 1. 

 

 

 

Fig. 5. Fracture strength of the three polymers. (a) PVA, (b) PS, and (c) PU. Dotted and solid 

lines respectively indicate strength values before and after heat treatment of samples prepared 

through the conventional process without anti-absorbent. 
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Fig. 6. Contact angle and fracture strength of samples prepared through process D. (a) Contact 

angle and (b) fracture strength. 
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Fig. 7. Fracture images after the strength test and microstructures of samples prepared with the 

four processes: (a) process A, (b) process B, (c) process C, and (d) process D. Each number 

indicates the fracture surface image before and after heat treatment. The top and bottom 

microstructures in each number are the inside and the edge of samples, respectively. Dotted and 

solid arrows indicate the glass phase generated at the interface of particles and on the surface of 

particles, respectively. 
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Fig. 8. Moisture-proof test in the dewaxing condition for sample type III prepared with 

processes A, B, C and D shown in Fig. 1.: (a) Dewaxing apparatus, (b) sample with process A, 

(c) sample with process B, (d) sample with process C, and (e) sample with process D. 
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