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ABSTRACT

Location-based services, such as targeted advertisement, geo-
social networking and emergency services, are becoming in-
creasingly popular for mobile applications. While GPS pro-
vides accurate outdoor locations, accurate indoor localiza-
tion schemes still require either additional infrastructure
support (e.g., ranging devices) or extensive training before
system deployment (e.g., WiFi signal fingerprinting). In or-
der to help existing localization systems to overcome their
limitations or to further improve their accuracy, we propose
Social-Loc, a middleware that takes the potential locations
for individual users, which is estimated by any underlying
indoor localization system as input and exploits both so-
cial encounter and non-encounter events to cooperatively
calibrate the estimation errors. We have fully implemented
Social-Loc on the Android platform and demonstrated its
performance on two underlying indoor localization systems:
Dead-reckoning and WiFi fingerprint. Experiment results
show that Social-Loc improves user’s localization accuracy
of WiFi fingerprint and dead-reckoning by at least 22% and
37%, respectively. Large-scale simulation results indicate
Social-Loc is scalable, provides good accuracy for a long du-
ration of time, and is robust against measurement errors.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless Com-
munication

General Terms

Algorithms, Experimentation, System
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Indoor Localization, Social Interaction, Middleware
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1. INTRODUCTION
Personal mobile devices such as smartphones have become

popular in the past several years. Many mobile applications,
such as Facebook, Twitter, Google+ and Foursquare, have
revolutionized the way a person interacts with the surround-
ing environment [10, 20, 38, 2]. For many of these mobile
applications, users’ locations are critical to the proper func-
tioning of applications. Since people spend most of their
time indoors (either in offices or at home), there is an in-
creasing demand for accurate indoor localization systems.
However, GPS-based localization systems [4] are not suitable
for indoor environments due to attenuation and the scatter-
ing of microwave signals. Therefore, different indoor local-
ization technologies are necessary. The existing state-of-the-
art solutions can be broadly categorized into four groups:
1) Proximity-based; 2) Range-based; 3) Signal-fingerprint-
based; and 4) Dead-reckoning.

Although indoor localization has been well-studied, chal-
lenging issues remain in many aspects. Proximity-based lo-
calization [32, 12] requires less computation, but it provides
only coarse-grained accuracy unless the density of reference
nodes is high. Range-based localization, such as measur-
ing Received Signal Strength Indication (RSSI), Time-Of-
Arrival (TOA) [22], Time Difference Of Arrival (TDOA)
and Angle-Of-Arrival (AOA), estimates the distances be-
tween a mobile device and multiple reference nodes so as to
triangulate the mobile device’s location. RSSI-based rang-
ing localization [33] can be easily achieved without involv-
ing additional hardware, but provides an unstable lower ac-
curacy, while alternative ranging methods [37, 5, 14] can
achieve higher accuracy at the price of requiring special-
ized hardware, thus incurring higher system and infrastruc-
ture costs. Signal-fingerprint-based approaches [6, 29, 18]
require a lengthy and extensive training phase to construct
a signal fingerprinting database for every individual’s indoor
locations of interest, and such a fingerprinting database can
change over time. [25, 31]. Furthermore, even with the
movement of users in the indoor environment, the perfor-
mance of signal-fingerprint-based systems could be affected
[30]. Although Dead-reckoning-based systems [8, 24, 35]
normally require no extra infrastructure support and no in-
tensive training phase, they suffer from lower localization ac-

curacy, especially after an extended period of time. Device-
free passive localization [18] is mainly used for intrusion and
anomaly detection or border protection.



In order to assist existing indoor localization systems to
overcome their limitations, we explore the social sensing of
mobile users in the indoor environment as virtual sensors.
Specifically, we introduce a middleware, called Social-Loc,
which exploits social events, such as the encountering multi-
ple users, and uses them as virtual sensors to cooperatively
refine the errors in the potential locations estimated from un-
derlying indoor localization systems. The refined potential
locations are then used by the underlying localization system
to further enhance their performance. More interestingly,
Social-Loc also utilizes events such as the non-encounter of
users in the indoor environment to further improve the lo-
calization accuracy. Our contributions are as follows:

• We introduce Social-Loc, a novel middleware for ex-
isting indoor localization systems that exploits social
sensing among mobile users as virtual sensors. To our
best knowledge, this is the first work that provides
a generic means of utilizing social interactions to im-
prove existing indoor localization accuracy.

• To improve system stability, we formulate encounter-
ing and non-encountering of mobile users as stochastic
events and propose a probabilistic approach to coop-
eratively calibrate their individual potential locations
based on encounter and non-encounter events.

• We fully implement our design on the Android plat-
form and perform both testbed experiments and large-
scale simulations under two commonly used indoor lo-
calization schemes: particle-filter-based Dead-reckoning
and WiFi fingerprinting. The testbed results, as well
as large-scale simulations, demonstrate that Social-Loc
is able to enhance underlying indoor localization accu-
racy and maintain its accuracy for a long duration.

The rest of this paper is structured as follows: The basic
design is introduced in Section 2. Section 3 describes our
advanced design. Section 4 reports our system implemen-
tation. Section 5 and Section 6 discuss our experiment and
simulation results. Section 7 discusses security and privacy
issues of Social-Loc. Section 8 discusses the related work.
Finally, Section 9 concludes the paper.

2. BASIC DESIGN
Social-Loc is a transparent middleware that sits between

basic indoor localization systems and location based appli-
cations. It aims to enhance the localization accuracy by
utilizing social sensing among co-located mobile users.

Figure 1 shows the overall system architecture of Social-
Loc. As shown in Figure 1, underlying indoor localization
systems, such as particle-filters-based Dead-reckoning [1, 9,
28] and Fingerprinting [6, 29], localize indoor users and pro-
vide their potential locations to the Social-Loc system. The
potential locations are a set of discretized geographical loca-
tions with nonzero probability of containing the user’s cur-
rent location. For example, potential locations from WiFi
fingerprinting are a set of reference locations that are asso-
ciated with the user’s fingerprinting measurements.

The social sensing unit monitors social interactions among
all users and identifies the encountered users. The detail of
encounter detection is presented in Section 4.1.1. Social-
Loc utilizes the users’ encounter information to derive sets
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Figure 1: Social-Loc architecture overview

of non-encountered users who are currently not co-located,
but still present in the same indoor environment.

There are two key components in Social-Loc: the Poten-
tial Location Calibrator and the Potential Location Adapter.
First, the potential location adapter receives every user’s po-
tential location set from an underlying localization system
and presents it as a distribution format. Then, the potential
location calibrator probabilistically refines the potential lo-
cations based on encounter and non-encounter information
from the social sensing unit. The underlying indoor local-
ization system retrieves the refined potential location from
the potential location adapter and then estimates the user’s
current location.

In the following sections, we introduce how Social-Loc uti-
lizes both user encounter and non-encounter events to cal-
ibrate the estimation errors and improve the accuracy of
underlying indoor localization schemes in detail. For the
purpose of illustrating the key ideas of Social-Loc, we first
present our design in a deterministic manner on coopera-
tively improving the potential locations of mobile users. In
Section 3, we extend this basic idea to probabilistically up-
date the weight of potential locations.

2.1 Utilizing Encounter Information
In an indoor environment, mobile users would normally

encounter many other users over time, and such user en-
counter events are able to significantly help Social-Loc to
improve the localization accuracy. Suppose the underlying
indoor localization system initially estimates the location
of user i at time t as a set Pi(t) = {p1, p2, . . . , pn}, where
p1, p2, . . . , pn are n potential locations. Assuming two mo-
bile users i and j encounter each other at time t, then their
potential location sets Pi(t) and Pj(t) can be reduced to:

Pi(t) = Pj(t) = Pi(t)
⋂

Pj(t) (1)

This is because whenever two users encounter one another,
this event relates them in space and time. As the intersec-
tion of two sets normally has much smaller cardinality than
the original sets, it is clear to conclude that encounter infor-
mation can improve the accuracy of localization.

To further illustrate the utilization of encounter infor-
mation, we use the example in Figure 2(a). Suppose the
underlying indoor localization scheme estimates the poten-
tial location sets of user A and user B as PA = {1, 5, 7}
and PB = {3, 5, 9}, respectively. As shown in Figure 2(a),
both A and B are co-located at location 5; then Social-Loc
discovers the encountered users and applies Equation (1).
Consequently, both A and B can successfully localize to one
specific location PA = PB = {1, 5, 7}

⋂

{3, 5, 9} = {5}.
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Figure 2: Examples illustrating utilization of en-
counter and non-encounter

Here, we emphasize that intersecting potential location
sets for encountered users do not always result in one spe-
cific location. Depending on the localization accuracy of
the underlying localization system, it may contain no or
multiple locations. This motivates us to design a proba-
bilistic approach of utilizing users encounter information in
Section 3.2.

2.2 Utilizing Non-Encounter Information
In contrast to encountering other users, it is more common

for a user not to encounter other users over a period of time.
Interestingly, in this work we reveal that such non-encounter
information can also improve localization accuracy.

The most intuitive method to utilize non-encounter in-
formation is to remove overlapping elements from potential
location sets of non-encountered users. For example, as-
sume the potential location set for user A and user B is
PA = {1, 4, 6} and PB = {2, 5, 6}, respectively. If user A
does not encounter user B we can remove the overlapping
location PA

⋂

PB = {6} from both PA and PB . However,
this intuitive approach to utilize non-encounter information
is incorrect. For example, user A may actually locate at lo-
cation 6, while user B locates at location 5. Even though
they do not encounter each other, we cannot simply remove
the overlapping elements from their potential location sets.

To illustrate the main idea of how to effectively utilize
non-encounter information, we use the example shown in
Figure 2(b). The potential location set generated by the
underlying indoor localization scheme for each user A, B and
C is PA = {1, 5}, PB = {5, 7} and PC = {5, 7} respectively.
Users B and C do not encounter each other, but they both
potentially locate at location 5 or 7. Therefore, we can infer
that there is exactly one user locating at each location 5 and
7, but we can not distinguish whether it is user B or user
C. Furthermore, since user A also encounters neither user
B nor user C, we are certain that user A does not locate at
location 5 or 7. Otherwise, user A would have encountered
either user B or C. Consequently, user A can be localized
to location 1 by removing the impossible location 5.

To generalize the above inference process, let us assume
that there are n users who do not encounter each other, and
their estimated potential location set at current time t is
P1(t), P2(t), . . . , Pn(t). If we have

|P1(t)
⋃

P2(t)
⋃

· · ·
⋃

Pn(t)| = n, (2)

then we can infer there is exactly one user at each of these
n locations. For such a set of n users, we call them n-Total
Occupancy Set (n-TOS). Take the example shown in Fig-
ure 2(b): users B and C form a 2-TOS since |PB

⋃

PC | = 2.
Furthermore, for a given number n, there may exist multiple
n-TOS involving different n users in the system.
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Figure 3: Examples illustrating problems of deter-
ministically utilizing encounter and non-encounter

Therefore, to fully utilize non-encounter information, as-
suming there are currently n users in the system, we need
to first find all existing total occupancy sets such as 1-TOS,
2-TOS and so on, up to n-TOS at time t. Given a specific
i-TOS, where i = 1, 2, . . . , n, let the unions of all potential
location sets for these i users be Ui. For each user j in the
system who does not encounter any of the i users in this
specific i-TOS at time t, we can update his or her potential
location set as follows:

Pj(t) = Pj(t)− Pj(t)
⋂

Ui (3)

Clearly, in this way, we improve the accuracy of the lo-
calization by effectively removing the impossible locations
from the potential location sets of individual users. While
utilizing TOS effectively improves the performance of indoor
localization systems, we observe it is not trivial to find all
TOSes in the system. In fact, we have proven this problem
is NP-Complete. In Section 4, we show it is not necessary to
find all TOSes in practical systems and discuss how to find
useful TOSes in detail.

3. ADVANCED DESIGN
In Section 2, we introduce the main idea of our Social-

Loc design in a deterministic manner to remove impossible
potential locations. However, such a deterministic approach
is error-prone if the original potential location sets or so-
cial sensing services contain errors. In this section, we first
discuss the limitations of the deterministic approach with
several examples and then extend the basic design to prob-
abilistic approaches.

3.1 Limitations of the Basic Design
If the ground truth locations of mobile users are always

included in their potential location sets generated by the un-
derlying localization system, Social-Loc can effectively apply
the deterministic method introduced in the previous section
to improve the localization accuracy. However, due to var-
ious measurement and estimation errors (e.g., drift errors
from inertial sensing), the estimated potential location sets
from the underlying localization system may not even con-
tain the ground truth locations of mobile users [28]. Under
such scenarios, if we just directly apply the deterministic
Social-Loc design, we may obtain very limited performance
gain or even performance deterioration.

For example, as shown in Figure 3(a), user A and user
B encounter each other at location 5, and their potential
location sets1 are PB = {1, 2, 4} and PA = {3, 5, 9} respec-
tively. However PA ∩ PB = ∅, then we can easily infer that
the potential location set for user A or user B contains the
error, but we can not further identify which user’s potential
location set contains error. To make the case even worse, if



PA = {1, 3, 4} and PB = {3, 5, 9} respectively, by applying
the deterministic encounter method in the previous section,
we incorrectly localize both user A and user B to location
PA

⋂

PB = {3} while the ground truth location is 5.
In terms of the deterministic non-encounter method, we

refer to an example shown in Figure 3(b). Suppose users A,
B and C do not encounter each other and their potential
location set is PA = {3, 5}, PB = {3, 5}, and PC = {5, 7},
respectively. Clearly, based on the definition of Total Oc-
cupancy Set (TOS), user A and user B form a 2-TOS as
|{A,B}| = |PA

⋃

PB| = 2. By applying the deterministic
non-encounter method, we would localize user C to location
PC = {5, 7} − {5, 7} ∩ {3, 5} = {7}. However, as shown in
Figure 3(b), the ground truth location for user C is loca-
tion 5. From this example we can see that due to the errors
in the original potential location sets, directly applying the
deterministic non-encounter method has the possibility to
erroneously remove the ground truth location of user C.

To resolve these issues, we introduce probabilistic methods
that utilize the encounter and non-encounter information in
the following sections. Conceptually, instead of completely
removing potential locations, the probabilistic methods re-
duce the probability of those unlikely locations in the po-
tential location sets such that the weight of ground truth
location is always nonzero.

3.2 Probabilistically Utilizing Encounter Infor-
mation

In the basic design section, each potential location in Pi

is treated equally. However, for most existing indoor local-
ization systems, users would have different probabilities in
different potential locations [1, 28]. Therefore in this sec-
tion, we extend the original potential location set by as-
sociating a weight to each potential location. Let Ω be a
set of all potential locations in an indoor environment. wu

i

denotes a weight associated with a user u at the potential
location pi ∈ Ω and it represents the probability of user
u currently located within the potential location pi. Then
Su = {pi ∈ Ω|wu

i > 0} represents a set of feasible potential
locations of a user u. For each user u, her potential location
set is represented as:

Pu = {(pi, w
u
i )|pi ∈ Su} (4)

Then if two users A and B encounter each other, we set
the potential location sets for user A and B as the union
between SA and SB , denoted by SAB = SA

⋃

SB. For the
weight wAB

i of each potential location pi ∈ SAB , we calculate
it with the following equation:

wAB
i =







wA
i w

B
i , pi ∈ SA

⋂

SB

δwA
i , pi 6∈ SA

⋂

SB & pi ∈ SA

δwB
i , pi 6∈ SA

⋂

SB & pi ∈ SB

(5)

where δ = min({wi : pi ∈ SAB}, 1
|Ω|

). Essentially in Equa-

tion (5), if a location pi appears in both users A’s and B’s
potential location sets, we calculate their joint probability
wA

i wB
i . On the other hand, if the location pi appears only

in user A’s or B’s potential location set, we still consider it
as a candidate location by assigning a smaller weight to pi.

For the updated potential location set

PAB = {(pi, w
AB
i )|pi ∈ SAB} (6)

1For brevity, we use Pi without t to represent the potential
location set of a user i at a certain time in this paper.
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Figure 4: An example illustrating a problem of uti-
lizing non-encounter information by a joint proba-
bility distribution

we normalize the weights of individual potential locations in
SAB as:

PAB = {(p1,
wAB

1
∑|PAB |

i=1
wAB

i

), . . . , (pm,
wAB

|PAB |
∑|PAB |

i=1
wAB

i

)} (7)

Now let us revisit the example in Figure 3(a) with the newly
introduced probabilistic method. Suppose, PA = {(1, 0.3),
(2, 0.3), (4, 0.4)} and PB = {(3, 0.1), (5, 0.7), (9, 0.2)}. Based
on Equations (5) and (7), we have the normalized potential
location set: PAB = {(1, 0.15) , (2, 0.15), (3, 0.05), (4, 0.2),
(5, 0.35), (9, 0.1)}. From the above results, we can see that
even though the original estimated potential location set for
user A does not contain the ground truth location 5, we can
recover the ground truth location 5 by cooperatively updat-
ing their potential locations by the probabilistic method.

3.3 Probabilistically Utilizing Non-Encounter
Information

In this section, we first illustrate that updating the weight
of potential locations by computing the joint probability
of non-encountered users does not always work. For ex-
ample shown in Figure 4, three non-encountered users A,
B, and C are located at 2, 6, and 5, respectively. Their
underlying indoor localization system provides their indi-
vidual potential locations PA = {(2, 0.6), (5, 0.4)}, PB =
{(5, 0.3), (6, 0.7)}, and PC = {(4, 0.1), (5, 0.6), (6, 0.3)}. The
joint probability of user C locating at 5 is 0.6× 0.6× 0.7 =
0.252. Similarly, the joint probabilities of user C locat-
ing at 4 and 6 are 0.19 and 0.02 respectively. After nor-
malization, the updated potential location set of user C is
P ∗
C = {(4, 0.41), (5, 0.54), (6, 0.05)}. This example demon-

strates that intuitively applying joint probability actually
reduces the weight of the ground truth location of user C
from 0.6 to 0.54 and increases the weight of unlikely poten-
tial locations of user C.

In this section, we extend the deterministic design dis-
cussed in Section 2.2 with the probabilistic method for 2-
TOS and generalize the method to n-TOS case. Concep-
tually, probabilistic methods reduce the weights of unlikely
potential locations instead of completely removing potential
locations of users who satisfies n-TOS condition.

3.3.1 Probabilistically Identifying 2-TOS

Suppose two non-encountered users A and B with their
potential location sets PA and PB are provided from an un-
derlying indoor localization. Assume the top-2 potential lo-
cations for users A and B with respect to their weights are
S2
A = {pi, pj} and S2

B = {pm, pn}, where superscript 2 de-
notes they are top-2 potential locations. To identify whether
or not user A and user B can form a 2-TOS, we first check



whether the top-2 potential location sets for user A and user
B satisfy the following condition:

|S2
A

⋃

S2
B | = |{pi, pj}| = 2 (8)

If users A and B satisfy condition (8), we then calculate the
reliability of 2-TOS they form (i.e., how likely user A and
user B will locate at different locations within their joint
top-2 potential locations).

Let E2 denote the event where users A and B co-locating
inside the same potential locations. Ē2 is the complement
of E2 which denotes the event where users A and B locate
in two different potential locations such that they do not
encounter. We have the non-encounter probability p(Ē2) as

p(Ē2) = 1− p(E2)
= 1−

∑

pi∈SA

⋂
SB

wA
i · wB

i
(9)

Note that in order to calculate the encounter probability be-
tween users A and B, we must include all potential locations
between user A and user B (SA∩SB), not just those limited
to the top-2 potential encounter locations.

Let R2(A,B) represent the reliability of the 2-TOS be-
tween user A and B, which is defined as the probability
that user A and B locate within {pi, pj} but they each lo-
cate at different locations (denoted as the event O2). We can
calculate the reliability of this 2-TOS based on the Bayesian
conditional probability as:

R2(A,B) = p(O2|Ē2)

= p(Ē2|O2)·p(O2)

p(Ē2)
= p(O2)

p(Ē2)
=

wA
i ·wB

j +wA
j ·wB

i

1−
∑

pk∈SA
⋂

SB

wA
k
·wB

k

(10)

where p(O2|Ē2) is the conditional probability of O2 given
users A and B do not encounter each other. In Equa-
tion (10), p(Ē2|O2) = 1 as the probability that two users
A and B do not encounter each other under the condition
that they each locate at a different location is 100%. There-
fore, p(Ē2|O2)p(O2) = p(O2). p(O2) = (wA

i ·wB
j +wA

j ·wB
i ) in

Equation (10) denotes the probability that two users locate
at different locations.

After obtainingR2(A,B), we utilize it to reduce the weight
of unlikely potential locations for other users. For a user C
who does not encounter both user A and user B, if SC ∩
{pi, pj} 6= ∅, we use the following equation to update the
weight of a potential location pk ∈ SC ∩ {pi, pj}:

wC
k = wC

k · (1−R2 + δ) (11)

where δ = min({wi : pi ∈ SAB}, 1
|Ω|

).

In Equation (11), we reduce the original weight of location
pi according to the reliability of the 2-TOS. The advantage
of this weight assignment is that user C could avoid losing
her ground truth location from the potential location set if
the 2-TOS formed by users A and B is unreliable. After
updating all relevant potential locations for user C, then we
normalize all associated weights in PC .

The δ is introduced in the Equation (11) to handle a sit-
uation in which the ground truth location is completely lost
from the potential location set generated from the underly-
ing indoor localization system. In this situation, Social-Loc
can use this δ to recover the lost ground truth location later
by utilizing encounter and non-encounter events.

To illustrate the advantage of probabilistically applying
2-TOS, we revisit the example in Figure 3(b). Suppose,

PA = {(3, 0.7), (5, 0.3)}, PB = {(3, 0.5), (5, 0.5)}, and PC =
{(5, 0.6), (7, 0.4)}. Between users A and B, P (Ē2) = 0.7 ·
0.5+ 0.3 · 0.5 = 0.5 since (pA3 , p

B
5 ) and (pA5 , p

B
3 ) are two pos-

sible cases of event Ē2 can occur. Based on Equation (10),
we have the reliability of 2-TOS formed by users A and B:
R2(A,B) = 1. However, this is incorrect since the ground
truth location 6 of user B was lost from the original potential
location set generated by the underlying indoor localization
system. In such case, Social-Loc still considers potential lo-
cation 5 as a candidate location of user C by multiplying
δ = 1/9 to wC

5 such that its updated weight is 0.07.

3.3.2 Probabilistically Identifying n-TOS

After describing how to probabilistically identify 2-TOS,
in this section we generalize the process for n-TOS. Suppose
the top-n potential locations of user A is Sn

A ⊂ SA, where
n = |Sn

A|. We first search all other users who do not en-
counter user A and have the possibility to form n-TOS with
user A. For user B with top-n potential locations Sn

B, if
|Sn

A∪Sn
B | = n, user B is considered a candidate to form a n-

TOS with user A. If there are m ≥ n−1 candidates to form
n-TOS whose top-n potential locations are fully overlapped
with Sn

A, then we need to check all
(

n

m

)

possible combina-
tions, calculate their corresponding n-TOS reliabilities and
select the combination with the highest reliability.

Let Ēn denote the event that n candidate users do not
encounter each other for one of the candidate combinations.
Since directly computing the probability of Ēn is challeng-
ing, we calculate the probability that any two out of n users
encounter at a potential location (E2), up to n users en-
counter at a potential location (En). Then, we can obtain:

p(Ēn) = 1−
n
∑

m=2

(n
m)
∑

k=1

p(Ek
m)

p(Ek
m) =

∑

pi∈
⋂

m
k=1

Sk

m
∏

j=1

wj
i

(12)

where k is the index of all combinations when selecting any

m users out of n users.
∑(n

m)
k=1 p(E

k
m) is the encounter prob-

ability of any m users out of n users, given m specific users
and their potential location set {P1, P2, . . . , Pm}.

Let On denote the event that n users locate at n different
locations within

⋃n

k=1 S
n
k . Given n users Un = {u1, . . . , un}

and n locations, there are n! different permutations of lo-
cating n users at n different locations. Let Zi = {z1, . . . zn}
represent one of the permutation sequences of n locations.
Therefore, there are at most n! cases when On can happen.
Since it is impractical to search for all n! cases of On, in
Section 4.1.2, we discuss how to practically utilize TOSes.

The probability for the event On is calculated as

p(On) =
n!
∑

i=1

∏

zj∈Zi

w
uj

g(zj ,uj)
,∀ui ∈ Un. (13)

where g(zj, uj) is the location index for pg(zj ,uj) ∈ Sn
uj

for
user uj in the zj ∈ Zi. For example, if

P 2
A = {(p1, w

A
1 ), (p2, w

A
2 )}, Zi = {p2, p1}

then, wA
g(z1,A) represents wA

2 .
Finally, to calculate the reliability of a n-TOS, we use the

following formula:

Rn(A,Un) = p(On|Ēn)

= p(Ēn|On)·p(On)

p(Ēn)
= p(On)

p(Ēn)

(14)
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Figure 5: Encounter Detection

If Rn(A,Un) is the largest among all possible
(

n

m

)

n-TOS
involving user A, then we use this n-TOS to update the
weights of potential locations for other users. The process
is similar to 2-TOS cases in Equation (11).

4. SOCIAL-LOC IMPLEMENTATION
To illustrate the application of Social-Loc, we build a

reference system on the Android platform and implement
two underlying indoor localization schemes: particle-filter-
based Dead-reckoning and WiFi fingerprinting. We first de-
scribe the implementation of the Potential Location Calibra-

tor. Next, we describe the implementation of the Potential
Location Adapter for each underlying localization system.

4.1 Potential Location Calibrator
Essentially, the potential location calibrator refines the

user’s potential locations based on the social interactions.

4.1.1 Encounter Detection

Refining potential locations requires effective and reliable
detection of encounters among mobile users to function prop-
erly. In our implementation, we utilize built-in WiFi direct
mode on the Android1as our encounter detection mecha-
nism. During the operation, each mobile phone periodically
scans for the beacon messages transmitted from other mo-
bile phones. We detect an encounter event between two
mobile users based on the presence of a peak RSSI from
both encountered users in the sequence of received beacon
messages. Intuitively, every encounter event should gener-
ate a peak RSSI since RSSI in general increases when two
mobile users approach each other and decreases when they
depart after the encounter. Figure 5 shows an RSSI trace
of received beacon messages collected by mobile users in our
experiment. The beacon messages are from users’ smart-
phones in WiFi direct mode. It was observed during the
experiment that the time of encounter events corresponds
to the presence of RSSI peaks in Figure 5.

Since typical communication range of WiFi-direct is 200m,
we set the RSSI-peak threshold to ensure an encounter hap-
pens within a potential location (about 3m×3m for Dead-
reckoning and 5m×5m for WiFi fingerprinting). When two
users are geographically close to each other, but separated
by an obstacle, our encounter detection implementation con-
siders this as a non-encounter based on RSSI-peak threshold.

1Unfortunately, WiFi direct mode in Android cannot simul-
taneously operate with regular WiFi. Therefore, we could
not implement this in a single smartphone. We worked
around this issue by using two smartphones per user during
our experiments: One smartphone with WiFi direct mode
and another smartphone providing the user’s potential loca-
tions to Social-Loc and scanning WiFi-direct.
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Figure 6 shows the changes of RSSI with respect to distance.
For the non-line-of-sight case, there is a 15cm thick concrete
wall between two users. Our observation shows, RSSI-peak
threshold of -50dBm detects an encounter as long as two
users are within 3m range and distinguishes it from the non-
line-of-sight case. As long as encounter detection is reliable,
Social-Loc can maintain good indoor localization accuracy
by utilize non-encounters even if the encounter rate is low.
Therefore, our encounter detection method detects few reli-
able encounters rather than many erroneous encounters.

In our experiment, when the scanning period is set to
2 sec/scan the encounter detection probability was almost
100% regardless of smartphone models as shown in Fig-
ure 5(a) and Figure 5(b). For our experiment, 100% accu-
rate encounter detection was necessary for a small number
of users. However, this increases average energy consump-
tion of smartphones by 24% as shown in Figure 7. In prac-
tice, we expect that the population density of any indoor
environment would be much higher than our experimental
settings, and our large-scale simulation in Section 6.6 shows
Social-Loc can tolerate detection errors up to 50% in such
a case. Therefore, Social-Loc should still perform effectively
when the encounter detection runs at a low scaning rate of
5 sec/scan. Figure 7 shows the energy cost of encounter
detection is negligible at this rate.

4.1.2 Practically Finding TOSes

As discussed in Section 2.2, Social-Loc uses Total Occu-
pancy Sets (TOS) for the non-encounter events to reduce
the weights of users’ unlikely locations. Since finding all
TOSes is NP-Complete, here we discuss how to practically
find TOSes that can effectively improve the localization ac-
curacy in the system.
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First of all, although there are many potential locations,
often there are only a few effective potential locations near
a user’s ground truth location. Figure 8 shows the weight
distribution of potential locations estimated from the Social-
Loc experiment after a representative user walked for nine
minutes. It is clear from Figure 8 that only the top-2 poten-
tial locations near the user’s ground truth location are the
ones that effectively estimate the ground truth. Therefore,
it is not necessary to search for all n-TOSes in practice.
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Figure 9: Distribution of TOS in log-plot. TOS
larger than 5 never occur in the case of 100 users
in the Dead-reckoning simulation.

To investigate how often n-TOSes with different n values
occur, we exhaustively search all n-TOSes with n up to 5 in
a Social-Loc simulation with 100 users and show the results
in Figure 9. The average occurrences of 1-TOS, 2-TOS, 3-
TOS and 4-TOS for 30 minutes are 40319, 368, 16, and 6
respectively. In Social-Loc, 1-TOSes represent users who are
localized to a single potential location. High occurrences of
1-TOS in Figure 9 are due to Social-Loc’s effectively local-
izing users to a single potential location. From Figure 9, it
is clear that the occurrences of 3-TOS and above are very
low. Therefore in a practical system implementation, it is
sufficient to consider and search for up to 2-TOS with O(n2)
complexity. To find all n-TOSes up to n = 2, we follow the
procedures described in Section 3.3.

4.1.3 Utilizing Encounters and Non-Encounters

The key mechanisms for Social-Loc to improve localization
accuracy are to increase the weights of more likely potential
locations and decrease the weights of less likely potential
locations. After obtaining encounter information and iden-
tifying TOSes, we update the weights of potential locations
for individual users as described in Section 3.

4.2 Potential Location Adapter
In Social-Loc, the potential location adapter handles the

translation of potential locations from the underlying indoor
localization system to a unified format for the Social-Loc and
applies the updated potential locations to an underlying lo-
calization system. Since the design of this adapter depends
on the underlying indoor localization system, we implement
particle-filter-based Dead-reckoning and WiFi fingerprint-
ing. We choose these two as underlying indoor localization
since they are the most representative categories of an indoor
localization system. However, we argue that better under-
lying indoor localization would only benefit Social-Loc since
Social-Loc is designed to leverage on the users with good
localization accuracy to reduce localization errors of other
users upon their encounters. We provide implementation
detail in the next two sections.

4.2.1 WiFi Fingerprinting

To demonstrate the application of Social-Loc, we imple-
ment WiFi fingerprinting based on Horus [36] as one of our
underlying indoor localization systems. Specifically, we col-
lect WiFi measurements manually at 89 reference locations,
spaced about 3m apart and spread across the floor. Floor
layout is shown in the Figure 10. Here, we denote these 89
reference locations as setX. At each reference location, 1000
WiFi beacons are collected for each proximate access point
(AP) using the smartphones. The average number of prox-
imate APs at each reference location is five in our testbed.
This data is used to train Horus system for generating ra-
dio map. The radio map is represented as a set of reference
locations. The RSSI measurement corresponding to each
reference location and each AP at each reference location is
presented as a non-parametric distribution (normalized).

The users scan WLAN periodically for available APs and
collect their signal strength vector s = (s1, . . . , sk). In Ho-
rus, the discrete space estimator localizes the user to a lo-
cation x ∈ X where probability P (x|s) is maximum. It is
shown in Horus that location x maximizing P (x|s) is equal
to location x maximizing P (s|x) based on the Bayes’s theo-
rem.

Generating Potential Locations from Horus. The
potential location adapter directly translates 89 reference lo-
cations X = {x1, . . . x89} in the radio map as total potential
locations Ω = {p1, . . . p89} for Social-Loc. Each reference lo-
cation represents a small area of the building floor. Any user
inside that area is localized to that reference location.

Given a signal strength vector s = (s1, . . . , sk) from user
u, the discrete space estimator in Horus first computes prob-
ability P (s|x) =

∏k

i=1 P (si|x), for all locations x ∈ X in the
radio map. Before the estimator computes for the x ∈ X
which maximizes P (x|s), potential location adapter inter-
rupts Horus to obtain a set of P (x|s) for x ∈ X. The weight
wi

u of each potential location pi ∈ Ω represents P (x|s) after
normalization.

Once all the weights are assigned to the potential loca-
tions they are forwarded to the potential location calibrator
component of Social-Loc, which refines their weights.

Applying Updated Potential Locations to Horus.
Resuming the regular online operations of Horus for a user
u requires probability P (x|s) for x ∈ X and the previous
estimated location. After refining potential locations, the
potential location adapter redistributes the weight of each
potential location pi ∈ Pu to its corresponding reference



Figure 10: Floor Map

locations xi ∈ X. Also, it resets the previously estimated
location to be a reference location that has the maximum
weight before resuming the interrupted Horus.

4.2.2 Dead-Reckoning
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Figure 11: Turning event detection

To demonstrate the effectiveness of Social-Loc, we also
design and implement a particle filter-based Dead-reckoning
scheme as another underlying indoor localization system.
Specifically, we use the built-in accelerometer and gyroscope
sensors on the smartphones to measure the inertial changes
and perform particle-filter-based location estimation.

Moving distance is estimated from a pedometer which
counts the number of steps that a user has walked based
on the periodic changes in the vertical direction of the ac-
celerometer [23]. We have tested the accuracy of our pe-
dometer under three different conditions, including putting
the smartphone in the hand, in the front-pocket, and in the
back-pocket of six different individuals. The accuracy of our
pedometer under these three conditions is 99.2%, 97.8%, and
94.5%, respectively.

After obtaining the number of steps that a user has walked,
the moving distance is estimated by multiplying the average
stride length to the step count. In this work we manually
measure the average stride length of each participant before
the experiment. The average stride length of these partici-
pants is between 0.65m and 0.8m.

We estimate the user’s moving direction by double inte-
grated gyroscope sensor readings from our experiment. Al-
though it is impossible to obtain the precise turning angle,
we can still estimate the turning directions based on the
changes in the slope of gyroscope sensor readings. In Figure
11, a decreasing slope indicates a right turn and an increas-
ing slope indicates a left turn. However, when the smart-
phone is inside the pocket, the constant changes in the ori-
entation of the phone cause a high chance of false-positive
and false-negative turnings in the measurement.

After obtaining the moving distance and turning infor-
mation, we estimate the most likely location of individual
users by particle-filter. Particle-filter estimates the current
location of a mobile user based on her previously estimated
location, her moving distance and the direction obtained
from inertial sensors. The estimated location is represented
with a set of weighted particles.

Generating Potential Locations from Particle Fil-
ter. Conceptually, the weight of each particle represents the
probability that the user resides at that particular particle’s
location. However, in an indoor environment it is more ef-
fective to estimate the user’s ground truth location based
on the density of particles around that location since any
particles entering the inaccessible areas will be considered
ineffective and their weights would be set to zero until re-
sampling of particles. Specifically, the user’s ground truth
location is more likely to be found in the area where the den-
sity of particles is high. Therefore, the potential locations
PA of user A and their associated weights are derived from
the density of particles around them. Here, we divide the in-
door environment into a set of 2×2m2 rectangular grids and
assign potential location weight wA

i of location pi ∈ PA by
total weights of particles residing in pi. Since some particles
are ineffective, wA

i is normalized based on Equation (7).
Applying Updated Potential Locations to Parti-

cle Filter. After the potential location update, potential
location adapter redistributes particles to the potential lo-
cations based on their updated weights. For example, as-
sume the potential location set for user A at time t0 is
PA(t0) = {(p1, 0.6), (p2, 0.4)}, and the new potential loca-
tion set at time t1 is PA(t1) = {(p1, 0.75), (p2, 0.25)} after
applying Social-Loc. To reflect this change of weights for
various potential locations, we redistribute 75% of the par-
ticles to location p1 and the remaining 25% of the particles
to location p2 by copying the live particles (particles with
weights greater than zero) near the locations p1 and p2.

5. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of

Social-Loc on top of two underlying indoor localization sys-
tems: Dead-reckoning and WiFi fingerprinting.

5.1 Experiment Setup
Both experiments are conducted on one floor of our of-

fice building; the floor map is shown in Figure 10. The
area of the floor is 107m × 12m. Although our testbed is
a long straight corridor that contains few corners, this lay-
out benefits neither WiFi fingerprinting nor Dead-reckoning.
The reason is our testbed is wide open corridor where RSSI
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Figure 12: Experiment Snapshot

radio fingerprint’s similarities between many pairs of refer-
ence locations are high and having fewer corners actually
increases the accumulative errors of the particle-filter-based
Dead-reckoning.

Six people participate as mobile users in the Dead-reckoning
and WiFi fingerprinting experiment for a period of 25 min-
utes. In order to obtain the ground truth location for indi-
vidual mobile users, we place 89 RF-tags uniformly across
the corridor and meeting rooms at the experiment site. To
record the ground truth location, each user holds a smart-
phone with near field communication (NFC) module on his
hand to scan the RF-tags along the walking path. Whenever
a user encounters another user, he or she scans the RF-tag
placed on the other user’s arm to collect the ground truth
encounter information. Before the experiment, we synchro-
nize the time of all the smartphones to record the ground
truth encounter times. Figure 12 shows a snapshot during
the experiment.

5.2 WiFi Fingerprinting

5.2.1 Average Localization Error Over Time
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Figure 14: Examples of the normalized signal
strength histograms from two different access point
in the testbed

In Figure 13(a), we show the average cumulative localiza-
tion errors of WiFi fingerprinting and Social-Loc for all users
over time. Since we assume that the initial starting location
of each user is known, everyone starts with zero localiza-
tion error. For all users, the average cumulative localization
accuracy of WiFi fingerprinting converges to 11m overtime.
This 11m is worse than the localization accuracy reported
in Zee [23] and Horus [36]. This is due to dynamic power
control in our WLAN network in which RSSI measured at
a given location does not follow any commonly known para-
metric distributions (e.g. Gaussian Distribution). The evi-
dence of this dynamic power control is shown in Figure 14.

Nevertheless, Social-Loc further improves system average
accuracy by 45%. In Figure 13(b), we show average localiza-
tion errors of each individual user. The average performance
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Figure 15: Similarity between two reference loca-
tions

of WiFi fingerprinting is around 10m and its variance is as
large as 20m. The large localization errors are mostly due
to power control. However, we have observed that users
are often localized to different nearby reference points for
each consecutive fingerprinting measurement. These small
variances (< 5m) are due to similarity between two finger-
printing measurements from two nearby reference locations,
respectively. Figure 15 shows the evidence of this similar-
ity. Social-Loc effectively eliminates these jumps between
nearby reference locations by reducing the weight of impos-
sible potential locations based on users’ encounter and non-
encounter events. As a result, Social-Loc limits this large
variance and improves average localization accuracy of all
six users by at least 22%.

5.2.2 Instantaneous Localization Error Over Time

In Figure 13(c), we show the instantaneous localization
error of a representative user. Figure 13 shows Social-Loc
improves the localization accuracy of WiFi fingerprinting in
many instances. Especially at the 3-minute mark, this user
encounters another user whose localization error is close to
zero. Social-Loc utilizes this event and calibrates the poten-
tial locations. The evidence of this effect is shown in the
small embedded figure of Figure 13. The embedded figure
shows that Social-Loc shifts the distribution of poorly esti-
mated potential location set {10, 11, 14} to correct potential
locations {1, 2}.

5.3 Dead-Reckoning

5.3.1 Average Localization Error Over Time

In Figure 16(a), we show the average cumulative localiza-
tion errors of Dead-reckoning and Social-Loc for all six users.
It shows Social-Loc can improve the localization accuracy of
Dead-reckoning overtime and maintain this good accuracy
during the entire 25 minutes of our experiment. In practice,
maintaining good localization accuracy for a long duration
of time is as important as low localization errors.

Figure 16(b) shows the localization accuracy of each in-
dividual user in the experiment. In contrast to WiFi fin-
gerprinting, localization accuracy of Dead-reckoning varies
significantly among different users. For example, user 1 and
user 5 in Figure 16(b) show localization accuracy of 1.9m
and 23.5m respectively. This is due to the difference in their
moving patterns and walking trajectories overtime. In such
a case, Social-Loc can cooperatively calibrate potential lo-
cations of user 5 with poor localization accuracy by utilizing
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Figure 13: Social-Loc Complete vs. Wifi Fingerprinting
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user 1 with good localization accuracy. As a result, user 5
improves her average localization accuracy by 91%. Even for
user 1, Social-Loc further improves her average localization
accuracy by 37%.

5.3.2 Instantaneous Localization Error Over Time

In Figure 16(c), we show instantaneous changes in local-
ization accuracy of Dead-reckoning and Social-Loc. From
Figure 16(c), we notice huge spikes that go up as high as
50m. These indicate the times when Dead-reckoning incor-
rectly estimates users’ ground truth locations. Once the
ground truth location is lost it take either long time for
Dead-reckoning to correct this error or often it never recov-
ers the ground truth location.

On the other hand, Figure 16(c) shows Social-Loc suc-
cessfully maintains instantaneous localization errors of six
users below 5m for 90% of the time. Especially at the 12-
minute mark, Social-Loc improves the accuracy from 50m
to 2m by utilizing encounter events to calibrate the poten-
tial locations. The evidence of this effect is shown in the
small embedded figure of Figure 16(c). The embedded figure
shows that Social-Loc shifts the distribution of the poorly es-
timated potential locations set to the correct potential loca-
tions set and their weights are concentrated within a smaller
potential locations set. Concentrating the weight distribu-
tion to a small number of potential locations is a key advan-
tage of Social-Loc. This helps underlying Dead-reckoning
to keep more particles alive near the user’s ground truth
location for a longer duration of time.

6. SIMULATION-BASED EVALUATION
To evaluate the performance of Social-Loc in a large-scale

indoor environment with a large number of mobile users (>
10 users), we simulate Social-Loc with the Dead-reckoning as
an underlying indoor localization. We simulate Social-Loc
to Dead-reckoning because an accurate WiFi fingerprinting
model for simulation is not available. We compare the per-
formance of Social-Loc with the following approaches:
• Social-Loc-Complete: Social-Loc utilizing both encounter
and non-encounter information for localization.
• Social-Loc w/ Encounter: Social-Loc utilizing only en-
counter information for localization.
• Dead-reckoning: A typical inertial localization method
using the particle-filter-based dead-reckoning.

6.1 Simulation Setup
In our simulation, we varied the number of users from 5 to

300 in a square area of 144m×144m with 100 rooms. Square
rooms 10m × 10m in size are regularly placed in a grid-like
topology, and adjacent rooms are separated by corridors of
2m wide.
Mobility Model: Random waypoint mobility model with
resting is implemented to simulate users’ mobility with aver-
age velocity of 1.44m/sec (approximately equal to 2 steps/sec).
Each user starts walking towards a randomly selected des-
tination along the corridor. Once the user reaches the des-
tination, he or she rests for some exponential random time.
When the resting is over, the users start walking again to-
ward another randomly selected destination. This process
is repeated until the 3000 seconds simulation ends.
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Figure 17: Number of Users vs. Localization Error

Error Model: Moving trajectories of users are estimated
based on the number of steps taken and turning angles.
However, in practice these values are prone to measurement
errors. In our simulation, we introduce error models for
these values to closely reflect the data collected from our
experiment. The step-counting errors are geometrically dis-
tributed random integer numbers with a step-error proba-
bility of 1% to 15%. The 15% is our worst bound step-
counting errors, since our implemented pedometer accuracy
varies from 90% to 99%. Turning angle error is modeled as
zero mean Gaussian distributed random variable with differ-
ent variances and added to each step. Small turning errors
from zero mean Gaussian distributed random variable with
small variance is used to reflect turning errors during walk-
ing straight. Large turning errors from zero mean Gaussian
distributed random variable with a larger variance is used
to reflect turning errors during the actual turnings.

6.2 Impact of Number of Users
The performance of Social-Loc greatly depends on the en-

counter and non-encounter events in the system. Although
exact encounter rate depends on many factors, such as floor
layout, mobility patterns and so on, the number of users in
the system is generally positively correlated with the fre-
quency of user encounters. Therefore, in this section, we in-
vestigate the impact of number of users on the localization
accuracy. Figure 17 shows the average localization errors
when we use the basic Dead-reckoning, Social-Loc with only
encounter information, and Social-Loc-Complete. From Fig-
ure 17, we observe that the average localization errors for the
Dead-reckoning are around 20m and independent of number
of users, while Social-Loc takes the advantage of the increas-
ing number of users. For Social-Loc with encounter, the av-
erage localization error drops 67% when the number of users
increases to 80. For Social-Loc-Complete, the average local-
ization error drops 77% when the number of users increases
to 80.

From Figure 17, we can also observe that when the number
of users in the system is relatively small (e.g., less than 20),
the performance between Social-Loc with only encounter
and Social-Loc-Complete is very similar. This is because
if there is a small number of users, the user encounter rate
reduces. Consequently, the location weights would be more
uniformly spread out among all potential locations. In this
case, Social-Loc can not effectively utilize non-encounter
events since it is also difficult to form many 1-TOSes or
2-TOSes. When the number of users is greater than 20
Social-Loc can greatly take the advantage of non-encounter
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Figure 18: Step Counting Accuracy vs. Localization
Error

events. We can see this happening in Figure 17 where the
average localization error for Social-Loc-Complete is about
36% smaller than that of Social-Loc with encounter when
there are 60 users.

6.3 Impact of Step-counting Accuracy
From our experiment, we find that the pedometer accu-

racy is below 97.8% when the smartphone is inside the user’s
front pocket. However, the step-counting errors can cause
poor estimation in the step length and make the underly-
ing Dead-reckoning system miscalculate the turning time.
For example, a ground truth turning happens after a cer-
tain number of steps, but the turning is detected a few steps
earlier or later due to the step-counting error. In this case,
the Dead-reckoning system can incorrectly assign a lower
probability to the potential location containing the user’s
ground truth location. In this simulation, we show Social-
Loc calibrates these errors in the potential locations of the
Dead-reckoning system.

To investigate the impact of step-counting accuracy, we
set gyroscope error and stride length error to zero. Figure 18
shows that when step-counting accuracy decreases from 99%
to 95% the localization error of Dead-reckoning increases
sharply whereas the localization error of both Social-Loc and
Social-Loc with encounter remains below 2m. When the step
counting accuracy decreases from 99% to 85%, the localiza-
tion error for Social-Loc-Complete increases from 0.36m to
13.9m. From Figure 18, we can see that both Social-Loc
approaches can improve the localization accuracy by 53%
compared to particle-filter-only design even when the step
counting accuracy is only 85%. Since the step-counting ac-
curacy in our experiment is around 95%, this result is con-
sistent with our experiment results in Section 5.

6.4 Impact of Stride-length Measurement Er-
rors

In the Dead-reckoning, the moving distance for a mo-
bile user is estimated by the number of steps that a user
walks multiplied by the stride length. As described in Sec-
tion 4.2.2, we estimate the number of steps that a user
has walked by analyzing data from the accelerometer sen-
sor. However, a person’s stride is usually multi-modal: The
stride length varies depending on how fast he/she is walking.

Therefore, in this section we study the impact of errors
in the stride-length measurement on the localization accu-
racy. Figure 19 shows the effect on the localization error by
varying the errors in each stride-length measurement. Es-
sentially, the larger error is added to the moving distance
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Figure 19: Variance of Stride Length Measurement
Error vs. Localization Error

by increasing the standard deviation of the stride-length
measurement error model, and this stride-length error ac-
cumulates over time if there is no reference existing in the
system to correct the error. For example, the localization
error of Social-Loc-Complete only increases from 1.96m to
2.33m when the stride-length measurement error increases
from 0.01m to 0.15m. Interestingly, in Figure 19, we ob-
serve the impact of such stride-length measurement errors
is relatively small.

During our empirical experiments, the stride-length error
normally is around 0.03m per step. From these results, we
can conclude that our Social-Loc design is insensitive to the
stride-length errors.

6.5 Impact of Gyroscope Errors
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Figure 20: Variance of Gyroscope Error vs. Local-
ization Error

Social-Loc uses gyroscope sensor readings to detect turn-
ing information of mobile users. In this section, we study
the impact of gyroscope errors on the localization accuracy.
In the case of Dead-reckoning, Figure 20 shows that increas-
ing gyroscope errors lead to larger localization errors. This
is because a larger gyroscope error leads to more false pos-
itive turnings. Any false positive turning error can reduce
many particles near the ground truth location. For exam-
ple, a false positive turning can be declared while the user is
walking along a straight corridor with walls on either side.
If this happens, some particles that take a turn would get
lost when they cross the walls. However, from Figure 20
we can see that the Social-Loc-Complete maintains rela-
tively low localization errors of 5m, which is 10 times less
than Dead-reckoning since false positive turnings can be cal-
ibrated whenever the users encounter each other. This result
indicates that Social-Loc improves the robustness of under-
lying Dead-reckoning against the measurement errors.

6.6 Impact of Encounter Detection Error
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Figure 21: Encounter Detection Error vs. Social-
Loc Localization Error

In Section 4.1.1, we implement accurate encounter detec-
tion using WiFi direct on smartphone. Normally encounter
events are detected when they are geographically close to
each other(< 3m). However, encounter detection errors may
happen if WiFi Direct signals do not generate obvious peaks
from two encountered users due to signal interference or mul-
tipath effect. In this simulation, we artificially drop some
encounter events based on a specified encounter detection
probability to study whether Social-Loc can tolerate any
encounter detection errors. Figure 21 shows that Social-Loc
is robust against encounter detection errors until encounter
detection probability falls below 30%.

6.7 Scalability of Social-Loc
Social-Loc is a middleware designed to work in real-time

with any practical indoor localization systems. Therefore,
its computation time is another key requirement. Table 1
shows the calibration time of Social-Loc utilizing both en-
counters and non-encounters for a large number of users.
The calibration time is the total computation time divided
by simulated real-world time (3,000 secs.). The computer
used for this test has Intel i7 3.4GHz CPU and 8G RAM.
The statistic shows that the population density of Shibuya,
one of the busiest shopping districts in Tokyo, is 13,540 per-
sons per km2, which is equivalent to 331 people in our simu-
lation setup. Considering this real fact, 1554/3000 sec (≈ 0.5
sec) computational time of Social-Loc to calibrate the po-
tential locations of 300 users is reasonable for any practical
location-aware applications.

In case of higher population densities where more than 300
users are in 144m x 144m, we can still handle these situations
by subdividing the area into smaller grids and computing the
Social-loc for each sub-area with users’ potential locations
in that sub-area only. This does not affect the performance
of Social-Loc. The reason is when population is as high as
331 users dividing the area into 4 equal sectors would still
contain an average of 82 users in each sector. We have shown
in Figure 17 that 80 users in a 144m x 144m area is enough
to keep the average localization accuracy of Social-Loc below
3m. Therefore, 83 users in 72m x 72m would not decrease
the performance of Social-Loc.

Number of users 100 200 300
Calibration time (sec) 432/3000 890/3000 1554/3000

Table 1: This table shows computation time of
Social-Loc



7. SECURITY AND PRIVACY ISSUES
Social-Loc is built on top of centralized indoor localiza-

tion systems where a central server runs the localization
system and produces potential locations. Social-Loc collects
encounter information of all users and refines their potential
locations. Many security schemes have been proposed for
the centralized indoor localization systems such as [13].

Social-Loc is a middleware and applying it to underlying
indoor localization systems neither reduces their security nor
exposes the privacy of users. This is because Social-Loc does
not explicitly require a user’s geographical location informa-
tion. The basic operations of Social-Loc is the set operations
such as the intersection of potential location sets in Equa-
tion (1) and searching for n-TOSes in Equation (3). There-
fore, an index of potential locations and their corresponding
weight is sufficient for Social-Loc to function properly. As
long as the underlying indoor localization system is secure,
Social-Loc does not weaken its security and privacy of user.

8. RELATED WORK
Indoor localization in low-power mobile networks has been

an active area of research due to its wide application do-
mains [3, 19, 15]. Due to space constraints, we focus here on
localization systems that are more relevant to Social-Loc.

Signal-fingerprint-based approaches work in two stages,
calibration (offline phase) and localization (online phase).
They first construct a signal fingerprint database from var-
ious sources, such as WiFi [36], sound [27], cellular [34] and
FM [21] etc., for individual locations of an indoor environ-
ment. Then they match the observed signal to the most
likely signal fingerprint in the database to estimate an ob-
ject’s location. Some notable solutions include Horus [36],
Sensloc [16], SurroundSense [1], ABS [27] et al. Since in-
terference always affects the observed signal strength [11],
signal-fingerprint-based localization suffers from the insta-
bility in positioning accuracy, where we explore Social-Loc
to improve the localization accuracy.

In Dead-reckoning, a user’s current position is calculated
by the previously determined position and various sensory
inputs. NavShoe [8] is a representative inertial navigation
system and achieves good performance with shoe-mounted
sensors. FootSLAM [24] and [35] use foot-mounted inertial
measurement unit (IMU) and particle filters to determine
users’ trajectories. SMART [39] combines signal fingerprint-
ing with Dead-reckoning method. These Dead-reckoning-
based schemes provide reasonable performance with an in-
trinsic assumption of fixed orientation of IMU, i.e., the per-
formance is strongly dependent on the precision and mounted
positions of inertial sensors. Therefore, they are not suitable
for practical usage of pervasive mobile computing devices
such as smartphones in the pocket. Under such conditions,
Dead-reckoning suffers from poor estimation of user loca-
tions due to systematic biases and random noises. Conse-
quently, it may generate multiple potential locations at every
time instance. In Social-Loc, we apply social interactions to
remove the impossible potential locations.

Recently, there have been several preliminary studies on
utilizing neighborhood links to enhance position estimation.
As far as we are aware, Social-Loc is the first work utiliz-
ing both user encounter and non-encounter information for
enhancing accuracy of underlying indoor localizations. Be-
side Social-Loc’s utilizing non-encounter information, there

are several key differences in the way Social-Loc utilizes en-
counter information compared to existing works.

Encounter-based sensor tracking (EBT) [26] is a relative
localization system utilizing users’ encounter events. EBT
first maps a user’s trajectory and distance between two en-
countered users to a graph and finding an embedding of this
graph in the plane.

Another tracking service utilizing user-intersections is Es-
cort [7]. It uses mobile phone inertial sensors and oppor-
tunistic user-intersections to develop an electronic escort ser-
vice. Escort maintains a single estimated track for each user
and performs the inertial drift cancellation by using users’
past intersections as routing points between any pair of per-
sons in the vicinity. Different from both EBT and Escort,
Social-Loc probabilistically updates the weight of potential
locations of encountered users.

Similar to Social-Loc, Kloch et al. [17] utilizes user’s
encounter information in the indoor localization by updat-
ing their joint probability distribution. However, Social-Loc
represents continuous location space as a set of discrete po-
tential locations and updates their weights by utilizing both
encounter and non-encounter information. This represen-
tation allows Social-Loc to be used as a transparent mid-
dleware for improving the accuracy of different underlying
indoor localization schemes.

9. CONCLUSION
In this paper, we introduce Social-Loc, an indoor localiza-

tion middleware that exploits social interactions among mo-
bile users as virtual sensors. The key insight for Social-Loc
to improve the localization accuracy is its capability to uti-
lize both encounter and non-encounter information among
mobile users. Based on the input from underlying indoor
localization systems, Social-Loc further probabilistically in-
creases the weights of more likely potential locations and
decreases the weights of less likely potential locations by
utilizing encounter events and Total Occupancy Sets (TOS)
for non-encounter events.

We have fully implemented the Social-Loc on the An-
droid platform with two reference indoor localization sys-
tems: particle-filter-based Dead-reckoning and WiFi finger-
printing. Then, we conduct extensive evaluations through
both experiments and simulations. The results show that
Social-Loc is able to significantly improve the accuracy of
underlying indoor localization systems and achieves good
accuracy.
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