137 research outputs found

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system

    Threat modeling for communication security of IoT-enabled digital logistics

    Get PDF
    The modernization of logistics through the use of Wireless Sensor Network (WSN) Internet of Things (IoT) devices promises great efficiencies. Sensor devices can provide real-time or near real-time condition monitoring and location tracking of assets during the shipping process, helping to detect delays, prevent loss, and stop fraud. However, the integration of low-cost WSN/IoT systems into a pre-existing industry should first consider security within the context of the application environment. In the case of logistics, the sensors are mobile, unreachable during the deployment, and accessible in potentially uncontrolled environments. The risks to the sensors include physical damage, either malicious/intentional or unintentional due to accident or the environment, or physical attack on a sensor, or remote communication attack. The easiest attack against any sensor is against its communication. The use of IoT sensors for logistics involves the deployment conditions of mobility, inaccesibility, and uncontrolled environments. Any threat analysis needs to take these factors into consideration. This paper presents a threat model focused on an IoT-enabled asset tracking/monitoring system for smart logistics. A review of the current literature shows that no current IoT threat model highlights logistics-specific IoT security threats for the shipping of critical assets. A general tracking/monitoring system architecture is presented that describes the roles of the components. A logistics-specific threat model that considers the operational challenges of sensors used in logistics, both malicious and non-malicious threats, is then given. The threat model categorizes each threat and suggests a potential countermeasure

    Role of air staging in a batch-type fixed bed biomass combustor under constant primary air

    Get PDF
    Staged combustion of biomass is the most suitable thermo-chemical conversion for achieving lower gaseous emissions and higher fuel conversion rates. In a staged fixed bed combustion of biomass, combustion air is supplied in two stages. In the first stage, primary air is provided below the fuel, whereas in the later stage, secondary air is supplied in the freeboard region. The available literature on the effects of air staging (secondary air location) at a constant primary air flow rate on combustion characteristics in a batch-type fixed bed combustor is limited and hence warrants further investigations. This study resolves the effect of air staging, by varying the location of secondary air in the freeboard at five secondary to total air ratios in a batch-type fixed bed combustor. Results are reported for the effects of these controlled parameters on fuel conversion rate, overall gaseous emissions (CO2, CO and NOx) and temperature distributions. The fuel used throughout was densified hardwood pellets. Results show that a primary freeboard length (distance between fuel bed top and secondary air injection) of 200 mm has higher fuel conversion rates and temperatures as well as lower CO emissions, at a secondary to total air ratio of 0.75 as compared to primary freeboard length of 300 mm. However, NOx emissions were found to be lower for a primary freeboard length of 300 mm as compared to 200 mm. An increase in secondary to total air ratio from 0.33 to 0.75 resulted in higher freeboard temperatures and lower CO as well as NOx emissions. The outcomes of this study will be helpful in the effective design of commercial scale biomass combustors for more efficient and environmentally friendly combustion

    Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial

    Get PDF
    Aim: We assessed the management and outcomes of non-ST segment elevation myocardial infarction (NSTEMI) patients randomly assigned to fractional flow reserve (FFR)-guided management or angiography-guided standard care. Methods and results: We conducted a prospective, multicentre, parallel group, 1 : 1 randomized, controlled trial in 350 NSTEMI patients with ≥ coronary stenosis ≥30% of the lumen diameter assessed visually (threshold for FFR measurement) (NCT01764334). Enrolment took place in six UK hospitals from October 2011 to May 2013. Fractional flow reserve was disclosed to the operator in the FFR-guided group (n = 176). Fractional flow reserve was measured but not disclosed in the angiography-guided group (n = 174). Fractional flow reserve ≤0.80 was an indication for revascularization by percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG). The median (IQR) time from the index episode of myocardial ischaemia to angiography was 3 (2, 5) days. For the primary outcome, the proportion of patients treated initially by medical therapy was higher in the FFR-guided group than in the angiography-guided group [40 (22.7%) vs. 23 (13.2%), difference 95% (95% CI: 1.4%, 17.7%), P = 0.022]. Fractional flow reserve disclosure resulted in a change in treatment between medical therapy, PCI or CABG in 38 (21.6%) patients. At 12 months, revascularization remained lower in the FFR-guided group [79.0 vs. 86.8%, difference 7.8% (−0.2%, 15.8%), P = 0.054]. There were no statistically significant differences in health outcomes and quality of life between the groups. Conclusion: In NSTEMI patients, angiography-guided management was associated with higher rates of coronary revascularization compared with FFR-guided management. A larger trial is necessary to assess health outcomes and cost-effectiveness

    Automated people-counting by using low-resolution infrared and visual cameras

    Get PDF
    Non-contact counting of people in a specified area has many applications for safety, security and commercial purposes. Visible sensors have inherent limitations for this task, being sensitive to variations in ambient lighting and colours in the scene. Infrared imaging can overcome many of these problems, but normally hardware costs are prohibitively expensive. A system for counting people in a scene using a combination of low cost, low-resolution visual and infrared cameras is presented in this paper. The aim of this research was to assess the potential accuracy and robustness of systems using low-resolution images. This approach results in considerable savings on hardware costs, enabling the development of systems which may be implemented in a wide range of applications. The results of 18 experiments show that the system can be accurate to within 3% over a wide range of lighting conditions

    DeepHuMS: Deep Human Motion Signature for 3D Skeletal Sequences

    Full text link
    3D Human Motion Indexing and Retrieval is an interesting problem due to the rise of several data-driven applications aimed at analyzing and/or re-utilizing 3D human skeletal data, such as data-driven animation, analysis of sports bio-mechanics, human surveillance etc. Spatio-temporal articulations of humans, noisy/missing data, different speeds of the same motion etc. make it challenging and several of the existing state of the art methods use hand-craft features along with optimization based or histogram based comparison in order to perform retrieval. Further, they demonstrate it only for very small datasets and few classes. We make a case for using a learned representation that should recognize the motion as well as enforce a discriminative ranking. To that end, we propose, a 3D human motion descriptor learned using a deep network. Our learned embedding is generalizable and applicable to real-world data - addressing the aforementioned challenges and further enables sub-motion searching in its embedding space using another network. Our model exploits the inter-class similarity using trajectory cues, and performs far superior in a self-supervised setting. State of the art results on all these fronts is shown on two large scale 3D human motion datasets - NTU RGB+D and HDM05.Comment: Under Review, Conferenc

    Deep Convolutional Self-Attention Network forEnergy-Efficient Power Control in NOMA Networks

    Get PDF
    In this letter, we propose an end-to-end multi-modalbased convolutional self-attention network to perform powercontrol in non-orthogonal multiple access (NOMA) networks. Weformulate an energy efficiency (EE) maximization problem wedesign an iterative solution to handle the optimization problem.This solution can provides an offline benchmark but might notbe suitable for online power control therefore, we employ ourproposed deep learning model. The proposed deep learning modelconsists of two main pipelines, one for the deep feature mappingwhere we stack our self-attention block on top of a ResNet toextract high quality features and focus on specific regions in thedata to extract the patterns of the influential factors (interference,quality of service (QoS) and the corresponding power allocation).The second pipeline is to extract the shallow modality features.Those features are combined and passed to a dense layer toperform the final power prediction. The proposed deep learningframework achieves near optimal performance and outperformstraditional solutions and other strong deep learning models suchas PowerNet and the conventional convolutional neural network(CNN)

    Cerebrovascular carbon dioxide reactivity and flow-mediated dilation in young healthy South Asian and Caucasian European men

    Get PDF
    Copyright © 2020 the American Physiological Society South Asians living in the United Kingdom have a 1.5-fold greater risk of ischemic stroke than the general population. Impaired cerebrovascular carbon dioxide (CO2) reactivity is an independent predictor of ischemic stroke and cardiovascular mortality. We sought to test the hypothesis that cerebrovascular CO2 reactivity is reduced in South Asians. Middle cerebral artery blood velocity (MCA Vm) was measured at rest and during stepwise changes in end-tidal partial pressure of CO2 (PETCO2) in South Asian (n = 16) and Caucasian European (n = 18) men who were young (~20 yr), healthy, and living in the United Kingdom. Incremental hypercapnia was delivered via the open-circuit steady-state method, with stages of 4 and 7% CO2 (~21% oxygen, nitrogen balanced). Cerebrovascular CO2 reactivity was calculated as the change in MCA Vm relative to the change in PETCO2. MCA Vm was not different in South Asians [59 (9) cm/s, mean (standard deviation)] and Caucasian Europeans [61 (12) cm/s; P > 0.05]. Similarly, cerebrovascular CO2 reactivity was not different between the groups [South Asian 2.53 (0.76) vs. Caucasian European 2.61 (0.81) cm·s-1·mmHg-1; P > 0.05]. Brachial artery flow-mediated dilation was lower in South Asians [5.48 (2.94)%] compared with Caucasian Europeans [7.41 (2.28)%; P 0.05). Flow-mediated dilation was not correlated with cerebrovascular CO2 reactivity measures. In summary, cerebrovascular CO2 reactivity and flow-mediated dilation corrected for shear rate are preserved in young healthy South Asian men living in the United Kingdom. NEW & NOTEWORTHY Previous reports have identified an increased risk of ischemic stroke and peripheral endothelial dysfunction in South Asians compared with Caucasian Europeans. The main finding of this study is that cerebrovascular carbon dioxide reactivity (an independent predictor of ischemic stroke) is not different in healthy young South Asian and Caucasian European men

    Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil

    Get PDF
    © 2015 Elsevier B.V. The impact of land use change and farming management on soil organic carbon (SOC) and soil inorganic carbon (SIC), particularly pedogenic carbonates (PC), was assessed in a semi-humid region of China. The SOC and SIC content and stocks were measured, and δ13C values were used to calculate the percentage of PC and lithogenic carbonates (LC) in the total SIC. Over the 39-year period, organic fertilizers at high and low rates (OFH and OFL), mineral fertilizers (MF), and a control site without fertilizers (CK) showed an increase of PC compared to a natural fallow plot (F). The main pathway of SIC accumulation was the neoformation of pedo-atmogenic carbonates contributing to C sequestration of at least 0.38, 0.27, 0.23, and 0.12MgCha-1yr-1 for the OFH, OFL, MF, and CK treatments, respectively. The LC stock remained similar in all treatments except for the CK, where LC was significantly lower than all of the other treatments which suggested dissolution. An increase in OC stocks in response to organic fertilization was not limited to the surface soil, but it continued down the soil profile to a depth of 160cm. The maximum potential for neoformation of PC depends on Ca2+ and Mg2+ availability; in this study these cations were provided by irrigation water. However, organic and mineral fertilizers modify this potential. Without organic and mineral fertilization, the PC formed at the expense of dissolution and re-precipitation of LC, even when substantial quantities of Ca2+ and Mg2+ were present in the soil. Our experimental results indicate that the neoformation of PC should be considered during estimation of soil carbon stocks and sequestration for the development of optimal fertilization, irrigation and land use practices.13

    Prevalence and type distribution of high-risk Human Papillomavirus (HPV) in breast cancer : a Qatar based study

    Get PDF
    Human papillomavirus (HPV) has been implicated in the etiology of a variety of human cancers. Studies investigating the presence of high-risk (HR) HPV in breast tissue have generated considerable controversy over its role as a potential risk factor for breast cancer (BC). This is the first investigation reporting the prevalence and type distribution of high-risk HPV infection in breast tissue in the population of Qatar. A prospective comparison blind research study herein reconnoitered the presence of twelve HR-HPV types’ DNA using multiplex PCR by screening a total of 150 fresh breast tissue specimens. Data obtained shows that HR-HPV types were found in 10% of subjects with breast cancer; of which the presence of HPV was confirmed in 4/33 (12.12%) of invasive carcinomas. These findings, the first reported from the population of Qatar, suggest that the selective presence of HPV in breast tissue is likely to be a related factor in the progression of certain cases of breast cancer
    • …
    corecore