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Abstract—In this letter, we propose an end-to-end multi-modal
based convolutional self-attention network to perform power
control in non-orthogonal multiple access (NOMA) networks. We
formulate an energy efficiency (EE) maximization problem we
design an iterative solution to handle the optimization problem.
This solution can provides an offline benchmark but might not
be suitable for online power control therefore, we employ our
proposed deep learning model. The proposed deep learning model
consists of two main pipelines, one for the deep feature mapping
where we stack our self-attention block on top of a ResNet to
extract high quality features and focus on specific regions in the
data to extract the patterns of the influential factors (interference,
quality of service (QoS) and the corresponding power allocation).
The second pipeline is to extract the shallow modality features.
Those features are combined and passed to a dense layer to
perform the final power prediction. The proposed deep learning
framework achieves near optimal performance and outperforms
traditional solutions and other strong deep learning models such
as PowerNet and the conventional convolutional neural network
(CNN).

Index Terms—non-orthogonal multiple access (NOMA), energy
efficiency (EE), power control, convolutional neural network
(CNN), self-attention.

I. INTRODUCTION

Energy efficiency (EE) is one of the widely adopted per-
formance metrics. Therefore, several studies have inves-

tigated EE maximization in non-orthogonal multiple access
(NOMA) networks [1]. Due to the non-convexity of EE max-
imization problem, the global optimum is difficult to obtain
when considering the conventional optimization methods [2].
Considering the studies in [3], [4], the authors decoupled
the problem first then proposed suboptimal solutions for the
subproblems. The solutions are iterative and might not be
suitable for the real-time application. Additionally, it has
been proved that sum of ratios problem (SoRP); precisely
the weighted sum energy efficiency (WSEE) maximization
problem in our case is NP-hard optimization problem even
when each ratio has concave numerator and linear denominator
[5], due to the fact that pseudo-concavity or quasi-concavity
properties are guaranteed to be preserved in case of addition.
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The upcoming fifth generation (5G) and beyond 5G (B5G)
networks seek more favorable solutions with lower compu-
tational complexity to guarantee strict run time or computa-
tional delay requirements [6]. In this regard, deep learning
has become a promising tool in overcoming the issues in
conventional optimization methods. In the literature, deep rein-
forcement learning (DRL), deep neural network (DNN) [7], [8]
and convolutional neural network (CNN) [2] are widely used
in physical-layer communications and resource optimization,
e.g., power control [9]. DNN-based power control entails some
shortcomings. First, for multiple interfered links, the input is
two-dimensional while DNN accepts one-dimensional input.
To overcome this problem, DNN employs vectorization of
the input. However, this is not practical for large problems.
Second, the current DNN based power control algorithm is
centralized. To obtain the optimal power control, the instant
channel state information (CSI) on all the links in the network
must be known for the base station (BS) which is deemed
unrealistic in case of employing DNN to solve the power
control in large networks since it would cause significant delay
[2].

Motivated by the previous research work in the literature
and the recent advancements in CNN architecture, we in-
troduce a modified version of the end-to-end multi-modal
based convolutional self-attention network [10], [11]. Our
contributions can be summarized as:

• To the best of our knowledge, this study the first work
to investigate the potentials of this new CNN architecture
for NOMA power control. Different from the studies in
[2] and [7], we leverage the multi-modality technique
to improve the power control prediction through fusion
of the deep modality features and the shallow modality
features. Because the deep modality features enhance
the semantic features and the shallow modality features
preserve the spatial details, this fusion makes them more
discriminative.

• We employ the self-attention to focus on the interference
and the QoS factors to enhance the power control.

• Furthermore, different from the original model in [11], we
employ max pooling on top of the self-attention block
to enhance the prediction power of the model since it
achieves translation invariance.

• Different from [7], our proposed deep learning model
leverages the window size to overcome the vectorization.
This allows BS passing CSI of multiple links faster to
the model. Hence, this makes our model more suitable
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for real-time application and the centralization problem is
alleviated as well. Additionally, unlike the model in [7],
our model can be trained with different channel models
simultaneously without losing the spatial and semantic
features.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider downlink multi-cell NOMA system where each

cell includes a BS in its center. The set of cellular users is
denoted as N = {1, 2, ....,N} and the users are associated with
the serving BS via K subchannels. Each subchannel k has a
bandwidth Wk. The BS has a power budget denoted by Pmax.
Let pi,k represents the allocated power of the user i on the
subchannel k, the BS sends a superimposed symbol s to the Nk

users multiplexed on the subchannel k. Hence, the transmitted
signal by the BS on the subchannel k is given as

xk =

N∑
i=1

√
pi,k si (1)

The received signal by the user i is written as

yi,k = hi,k xk + ηi,k

= hi,k
√

pi,k si +

Nk∑
j=1, j,i

hi,k
√

p j,k s j + ηi,k (2)

where hi,k = gi,kζi,k +εi,k is the channel coefficient between the
BS and the user i where εi,k, gi,k and ζi,k represent the channel
error, the small-scale fast-fading and the large-scale fading
coefficients, respectively. ηi,k is the additive white Gaussian
noise (AWGN) with zero mean and variance σ2. According
to NOMA protocol, the successive interference cancellation
(SIC) technique is applied at each receiver. According to the
SIC process, the user with the better channel conditions can
remove the interference from other users with the poor channel
conditions on the same subchannel. Therefore, without loss of
generality, the following order can be assumed∣∣∣h1,k

∣∣∣2 ≥ ∣∣∣h2,k
∣∣∣2....... ≥ ∣∣∣hNk ,k

∣∣∣2 (3)

The signal-to-interference-plus-noise ratio (SINR) of the user
i on the subchannel k with SIC can be given by

γi,k =
pi,k

∣∣∣hi,k

∣∣∣2
σ2 +

i−1∑
j=1

∣∣∣hi,k

∣∣∣2 p j,k

(4)

The data rate of the user i can be defined as below

ri,k = Wklog2

1 +
pi,k

∣∣∣hi,k

∣∣∣2
σ2 +

i−1∑
j=1

∣∣∣hi,k

∣∣∣2 p j,k

 (5)

Considering the WSEE, our optimization problem is given as
follows

max
{pi≥0}Ni=1

K∑
k=1

N∑
i=1

ωi,k
ri,k

pi,k + pc

s.t. C1 : ri,k ≥ Rmin,

C2 : pi,k ≤ Pmax,

(6)

where ωi,k is the weight of the user i on the subchannel k
and pc is the circuit power consumption. The constraints C1
represent QoS requirements and C2 to state that the user power
consumption should be less than the maximum power budget.

In this work, our goal is to design energy-efficient power
allocation algorithm to handle the above problem. However,
there are multiple challenges need to be addressed. First,
the above problem is multiple ratio problem SoRP which
is NP-hard [12]. Second, sum of ratios function is neither
pseudo-concave or quasi-concave; even if both numerator and
denominator are affine [5]. Hence, developing an algorithm to
solve (6) with reasonable complexity is still beyond the reach
of the most of the known methods especially for large number
of rations. Third, the high computational nature of the solution
of this problem makes the real-time application remarkably
challenging. Besides, any changes in the channel conditions
will require instant adaptation in the proposed solution.

From the above, the proposed solution consists of two
stages. In the first stage, we design an iterative solution to
obtain suboptimal solution. In the second stage, we design a
deep learning framework to enable real-time power control.

III. AN ITERATIVE SOLUTION FOR WSEE
MAXIMIZATION PROBLEM

Some studies advocate applying successive convex approx-
imation [3], [13], however, none of them could obtain the
global optimal solution in the polynomial time. Furthermore,
applying the lower bound approximation on (6) will lead to
sum of pseudo-concave functions which is not guaranteed
to be pseudo-concave [5]. Moreover, it is difficult to extend
Dinkelbach’s method to multiple ratio fractional problem
scenario [14]. Besides, the optimality of the power vector in
maximizing EE is crucial to the convergence of Dinkelbach’s
method.

Nevertheless, we can develop an iterative suboptimal algo-
rithm but yields the Karush-Kuhn Tucker (KKT) point. Hence,
performing relaxation, we have the following Lagrangian
function

L (p, λ, β, υ) =

K∑
k=1


N∑

i=1
ωi,k

ri,k

pi,k+pc
+ λpi,k − β

(
Pmax − pi,k

)
−

N∑
i=1
υi,kri,k − Rmin


(7)

Our power allocation pi,k can be written as the following fixed-
point

pi,k =
1

ln 2
ϕi,k − υi,k

β − λ + ξi
−
σ2 + Ii,k∣∣∣hi,k

∣∣∣2 (8)

where λ, β and υi,k are Lagrange multipliers associated with the
nonnegativity of the power allocation, maximum sum power
allocation and the minimum rate, respectively. ϕi,k and ξi,k are
given as follows

Ii,k =

i−1∑
j=1, j,i

∣∣∣hi,k

∣∣∣2 p j,k (9)

ϕi,k =
ωi,kWi,k

pi,k + pc
(10)
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ξi,k =

ωi,kWklog2

1 +
pi,k|hi,k|

2

σ2+
i−1∑

j=1, j,i
|hi,k|

2 p j,k

(
pi,k + pc

)2 (11)

To obtain the final power allocation, first we initialize the
power into a feasible value, then update it by solving the
following problem

pi,k = max
{
0, 1

ln 2
ϕi,k−υi,k

β−λ+ξi,k
−

σ2+Ii,k

|hi,k|
2

}
pi,k ≤ Pmax∣∣∣hi,k

∣∣∣2 pi,k ≤ Q

(12)

where Q represents the permittable interference level caused
by the user i to other users. Algorithm 1 includes the steps of
the iterative solution.

Algorithm 1 Iterative Power Allocation for WSEE Maximiza-
tion

Initialization: Rmin, p(0)
i,k , β

(0), ε, t = 0, Q, υi,k.

1: while
∣∣∣∣p(t+1)

i,k − p(t)
i,k

∣∣∣∣ > ε do
2: t = t + 1
3: Calculate Ii,k, ϕi,k and ξi,k using (9), (10) and (11)
4: Calculate p(t)

i,k by solving (12)
5: end while

Dinkelbach-like algorithm converts the original problem in-

to a sequence subproblems in the form max
x,y

N∑
i=1

( fi (x) − ygi (x)).

Assuming the number of iterations to calculate the subprob-
lems and the sub-gradients for the multipliers are Ts and Tg,
respectively. The calculation of (8) entails NK operations. The
update of the multipliers entails O (N). The convergence of
the loop in Algorithm 1 can be obtained with complexity
O

(
log

(
1
ε

))
. The total complexity of the power allocation

scheme is O
(
TsTgN2K log

(
1
ε

))
. The proposer selection of the

initial values of the multipliers and the accuracy in calculating
the step sizes have considerable impact on the number of
iterations.

IV. MULTI-MODAL BASED CONVOLUTIONAL
SELF-ATTENTION NETWORK

In this section, we introduce our modified end-to-end multi-
modal based convolutional self-attention network (we abbrevi-
ate it here as MM-CSAN) to perform the power control. Fig.
1 shows the proposed structure of the network.

Assuming that users’ CSI are collected and sorted on the
BS. Hence, we assume full CSI at the BS. In practice, the
CSI is updated every frame (consisting of a set of time slots),
and keeps static within a frame. Thus, the collected CSI are
passed as input to the next stage where the proposed MM-
CSAN learns the patterns in the input to give more accurate
power prediction.

The proposed framework works in two stages. The first
stage is the deep feature extraction using deep CNN with self-
attention network from the normalized data. The second stage
is fusing the features extracted from the CNN and the shallow
features, then we have dense layer for detection.

Fig. 1. Structure of the proposed deep multi-modal based convolutional self-attention
network.

In the following subsections, we discuss the structure the
proposed network in details.

A. Data Preparation, Training and Testing Procedures

Our goal is to find the function that maps the input of
deep network pipeline {xd

i,k} and the input of shallow modality
pipeline {xs

i,k} to the power given the training set of instances-
label tuples {{xi,k}, {pi,k}}. xi,k is defined as below

xi,k = {xd
i,k, x

s
i,k} (13)

where {xd
i,k} is a mapping of the user’s channel coefficient hi,k,

and the corresponding threshold of interference Qi,k and Rmin,
and given as follows

xd
i,k = {hi,k, h j,k,Qi,k,Rmin} (14)

While xs
i,k is the shallow modality features in our case include

the channel coefficient of the users who share the same
subchannel with the user of interest ( given here as h j,k)
and the channel conditions under large-scale fading channel
components. Thus, xs

i,k is written as

xs
i,k =

{
h j,k, hi,k, h̃i,k, h̄i,k

}
(15)

where h̃i,k and h̄i,k represent the shadowing channel model and
small-scale fading channel model, respectively. The inclusion
of those components is to spatially connect the variations in
the channel. Taking the advantages of the convolutional neural
networks, the input data can be inserted as directly with no
need for vectorization process due to the presence of window.

Suppose that the training input x ∈ N×W×1 represents the
mapping {xi,k} where N and W are spatial dimensions, the
desired output is {pi,k} and the predicted output by the neural
network is { p̂i,k}. During the training, we aim to minimize the
loss function L = E

[(
pi,k − p̂i,k

)]
.

To generate the training data set, we consider a region
of 1km×0.5km for simulation. The users are randomly and
uniformly distributed over the region. Distance-based path
loss can be conveniently obtained at any given spot within
the region. However, for more practical approximation of the
real-world fading channel, we generate shadowing and fast
fading channels. Where ζi,k = 10−(PL−G)/10, ζi,k = 10−(PL+υ−G)/10

and ζi,k = 10−(PL+υ−G)/10 are the fading components for the
distance-based path loss channel, shadowing channel and
small-scale channel model, respectively. gi,k = 1 for both path
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loss and shadowing channel models and gi,k ∼ Rayleigh (1)
for small-scale fading channel model. υ ∼ N

(
0, ς2

)
is the log-

normal shadowing and ς is the standard deviation. The optimal
solution is obtained using the exhaustive search method and
MM-CSAN is trained with the optimal solution.

B. Structure of the Proposed Deep Learning Model

1) Deep CNN for Feature Extraction: To design our CNN
feature extractor, first consider the input x ∈ N×W×1. The
extracted convolution features fc ∈ N×N×16 using the encoder
(which is CNN with residual block [15] indicted as ResNet in
Fig.1) are defined as

fc = fResNet (Wa ⊗ x) (16)

The kernel size is 3 × 3. Then, fc is passed to self-attention
block to extract higher level features by focusing on specific
region in the data.

2) Self-Attention Block for Enhanced Feature Extraction:
In order to precisely predict the desired output based on the
detection of specific pattern in the input data, the model focus
on certain regions within the feature map of the input data.
Hence, the feature map fc is fed to self-attention block (see
Fig.2) to focus on the regions of interest and extract deeper
features. The convolutional feature map fc is first rearranged to

Fig. 2. An illustration of self-attention block.

yield the map f ′c ∈
N×N×8 . Then, f ′c is fed to the self-attention

block to generate the feature map Θa ∈
N×N×c′ . The feature

map Θa is multiplied by scaling parameter θ and added to f ′c
to finally obtain the self-attention feature map fa as follows

fa = θ ∗ Θa + f ′c (17)

fa is passed through pooling and linear projection to obtain
the deep features fd which is the final feature of our main
pipeline for deep feature extraction.

3) Hybrid Fusion of Deep and Shallow Modality Features:
The shallow modality features are normalized and fed into
flatten layer. Then, the normalized shallow modality and the
high quality features from the main pipeline of our model are
concatenated together to form the hybrid features fh.

C. Working Mechanism

Consider the main two pipelines of the proposed deep net-
work. In the main pipeline, we pass {xd

i,k} to the ResNet which

is good in capturing the patterns in the data (i.e interference
patterns) and hence, the feature map fc is generated. The self-
attention block focuses on specific regions (Qi,k and Rmin) in
the feature map fc and extracts higher quality feature map
fa. These high-quality features represent the integrated global
information obtained as result of interactions of those regions
in the data throughout layers of the self-attention block. More
specifically, the readable pattern between the spatial features
such as the relationship between the interference threshold and
the channel coefficient, QoS and channel coefficient. Multiple
patterns are possible to be deeper focused on by the self-
attention block. The scaling parameter θ is initialized using
a uniform distribution, therefore it is updated via learning
procedure. During the learning process, this parameter enables
the network to focus on the desired region and its neighboring
locals, then weight assignment procedure is used to differenti-
ate the local and non-local regions. A max pooling operation
followed by a linear projection are applied on fa to finalize
the deep feature map representation as fd.

In the second pipeline, the shallow modality feature map-
ping fs is obtained as a normalization of the input {xs

i,k}.
Then, concatenated with fd to form the hybrid feature map fh.
Finally, we pass fh to the dense layer to perform the prediction
of the power allocation. To satisfy constraint C2, the activation
function f (x) =

Pmax
1+exp(−x) ∈ [0, Pmax] is used in the output layer.

V. SIMULATION RESULTS

A. System Setup

The model is implemented in Keras 2.2.4 with TensorFlow
1.8.0 backend and Python 3.6 platform. The computer spec-
ifications are: 3.7GHZ Intel core i7, GeForce RTX 2080Ti
graphic card, and 32GB memory. The number of training
samples is 166000 and the number of testing samples is 6000.
The training epoch is set to be 300 and for the nonlinearities;
we have batch normalization with batch size is set to 100. The
learning rate is 0.001 and the dropout is 0.05. We employed
ADAM optimizer over the problem.

B. Performance Comparison

We consider two cells downlink NOMA network with one
BS in the center of each cell, the cell radius is 500 m and the
users are randomly distributed in the cell. We assumed two
users are sharing one subchannel. The carrier frequency is 250
kHz. The number of subchannel is K = N/2, the noise figure
is 7 dB and pc = 10 dBm. We also considered different fading
channel models for the generation of shallow modality features
while the small-scale Rayleigh fading channel between users
and BS is the main testing channel model. The noise power
spectral density N0 = −174 dBm/Hz. The error tolerance
parameters ε in Algorithm 1 is set to 0.001. We considered
fixed and bounded channel error 0.1.

The weights are generated randomly such that
K∑

k=1

N∑
i=1
ωi,k = 1

and assigned to the users according to the SIC order; where
the users with better channel coefficients are assigned with
lower value weight.
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TABLE I PERFORMANCE COMPARISON BETWEEN DIFFERENT FRAMEWORKS IN TERMS OF COMPUTATIONAL TIME

Approach
Number of Users per BS

20 40 60
Percentage GPU time(ms) Percentage GPU time(ms) Percentage GPU time(ms)

Exhaustive Search 100% 26.330 100% 33.909 100% 38.4410
Algorithm 1 100% 15.013 100% 16.700 100% 17.966
MM-CSAN 1.490% 0.221 1.832% 0.234 1.883% 0.255

PowerNet [2] 1.409% 0.140 1.696% 0.161 2.025% 0.205
Conventional CNN 1.255% 0.112 1.291% 0.127 1.977% 0.203

DC 100% 15.114 100% 16.733 100% 18.001

For the comparison,first, exhaustive search is employed
to find the optimal power allocation and to serve as an
optimal benchmark to quantify the performance of the pro-
posed frameworks. Additionally, different of two convex (DC)
programming [16] and Algorithm 1 are considered as conven-
tional low complexity power control schemes. To compare the
proposed MM-CSAN with other deep learning models from
the literature, we considered the PowerNet model in [2] which
is a CNN with residual learning blocks. We also considered
a conventional structure of CNN including two convolutional
layers, two max pooling layers, flatten and fully connected
layer. The fully connected layer includes three hidden layers
and an output layer. Similarly as in our MM-CSAN, the kernel
size is 3 × 3, max pooling layer with 2 × 2 filter and the
activation function is ReLU. The dropout is set to 0.05 and
the layer steps are 1 and 2 for the convolution and pooling,
respectively.

We focus on the online computational complexity since the
offline data generation and training have no impact on the real-
time application. Table I shows the performance comparison
between the proposed framework and other frameworks in
terms the computation time over the GPU. For number of users
N = 20 per BS, due to the iterative nature of exhaustive search
method, Algorithm 1 and DC, MM-CSAN is 110 times faster
than exhaustive search, 67 times faster than Algorithm 1 and
68 times faster than DC method. PowerNet is 1.6 times faster
than MM-CSAN and this gap is shrinking with increasing in
the number of users. For instance, when 60 per BS, PowerNet
is just 1.2 times faster than MM-CSAN. However, PowerNet
has poorer EE performance compared to MM-CSAN (e.g., see
Fig. 3) and the performance gap is increasing with increasing
of the problem size. Despite the conventional CNN is faster
than all other models (e.g., 1.9 times faster than MM-CSAN
when 20 per BS), it is the least energy-efficient among all
(as it can be seen later). It is worth mentioning that the
computational complexity of exhaustive search is exponential
in the number of variables. Hence, the asymptotic complexity
of exhaustive search and DC programming are O

(
2(NK)4)

and
O

(
TDC N3K3

)
, respectively. Where TDC is number of iterations

for DC programming. From all above, MM-CSAN is more
suitable for large problem and more suitable for real-time
application.

In Fig. 3, we investigate the impact of the power bud-
get Pmax. For lower value of Pmax, EE performance for all
frameworks is comparable because each user can transmit with
its possible maximum power. However, for higher Pmax, EE
of all frameworks increase with the increasing of Pmax and
stagnate at about 8 dBm. The performance of MM-CSAN
is closer to that of the exhaustive search. Algorithm 1 and
DC has comparable performance. However, they are more

Fig. 3. Network EE for different values of the Pmax.

energy efficient than both PowerNet and the conventional
CNN. Nevertheless, the performance of MM-CSAN is clearly
better than that of other frameworks except exhaustive search
and that due to the capability of MM-CSAN of capturing
the patterns of the interference and QoS while predicting the
corresponding near optimal power allocation that matching
these factors. EE stagnates at 5.7489 Mbits/Joule, 5.7090
Mbits/Joule, 5.6442 Mbits/Joule, 5.6457 Mbits/Joule, 5.6276
Mbits/Joule and 5.6139 Mbits/Joule for exhaustive search,
MM-CSAN, DC, Algorithm 1, PowerNet and conventional
CNN, respectively.

Fig. 4. Network EE vs permittable interference levels.

Fig. 4 depicts the performance with regards to the per-
mittable levels of interference. When the permittable level of
interference is low, EE increases. When the interference level
is high enough, the allocated power causes severe interference
leads to stagnation in EE. Again, due to the abilities of our
deep learning model in capturing the influential parameters
patterns, we can observe the learning stability in the curve of
MM-CSAN. PowerNet shows less fluctuations in EE compared
to the conventional CNN due to the its capability in capturing
the interference patterns. MM-CSAN shows great performance
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closer to the optimal and comparatively better than that of
Algortihm 1, DC, PowerNet and the conventional CNN.

Fig. 5. Number of served user versus Rmin.

Fig. 5 shows the number of served users for different values
of Rmin. The number of served users decreases when Rmin

increases. It can be seen that our MM-CSAN model shows
stability in predicting power that satisfies the level of Rmin

especially for smaller values of Rmin and clearly outperforms
Algorithm 1, DC, PowerNet and conventional CNN. For larger
Rmin, despite the deterioration in the performance, MM-CSAN
still achieves notably better performance compared to that of
other methods. It is obvious from these observations that MM-
CSAN is more suitable for larger problem compared to the
other methods in this study.

Fig. 6. Network WSEE versus Rmin for different permittable interference levels.

In Fig. 6, we assess the capabilities of different methods in
dealing with impact of both Rmin and the interference levels.
We check the performance for different values of Rmin and the
interference levels. Consequently, we can observe that MM-
CSAN can achieve performance near to the optimal due to
the presence of the attention mechanism which allows the
model to focus on capturing the patterns in data. Moreover, the
semantic and spatial encoding of the features and the fusion
of different features adds discriminative trait to the features.
Hence, the prediction can be enhanced. We considered 10
per BS to simulate Fig. 6. For lower Rmin and IL = 250,
the performance of MM-CSAN is comparable to that of the
exhaustive search and better than that of Algorithm 1, DC,
PowerNet and the conventional CNN. For higher Rmin (e.g.
0.8 Mbps) and IL = 750, the performance gap between MM-
CSAN and the optimal solution is obvious. However, MM-

CSAN achieves better performance than that of Algorithm 1,
DC, PowerNet and the conventional CNN and the performance
gap between these methods and MM-CSAN is growing with
the increasing of Rmin and IL.

VI. Conclusion

In this work, we proposed an end-to-end multi-modal con-
volutional self-attention network to perform power control
in NOMA network. The model consists of main pipeline
with self-attention block for high quality feature extraction
and another pipeline for shallow modality feature extraction.
Those features are combined to make more discriminative
features and enhancing the power prediction. The simulation
results showed that the proposed model is suitable for real-time
applications and outperformed other models such as PowerNet
and the conventional CNN.
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