33 research outputs found

    Short Term Evolution In The Immune Response Of Drosophila Melanogaster: Insights From Studies Of Population Genetics And The Epidemiology Of Bacterial Infection

    Full text link
    Studies of natural populations reveal that tremendous phenotypic variation in immune function exists within species. Selection on extant variation drives the short term evolution of the immune response, potentially resulting in the temporary maintenance of genetic variation in populations or in the fluctuation of allele frequencies. Immune response genes also frequently show evidence of elevated rates of adaptive evolution between species. I used two approaches to study how genetic variation within a population is related to long term evolutionary patterns. From an in-depth study of the pathogen recognition molecule Eater, I find evidence for a recent partial selective sweep in a single population of Drosophila melanogaster. The putatively selected allele has a significantly higher level of gene expression, suggesting that gene regulation rather than protein structure is the target of selection. In a broader study of over 200 immune genes using target enrichment and high-throughput sequencing, I find that genes with the highest rates of adaptive evolution between species have low levels of variation within a population. This suggests that selective sweeps, which reduce variation, occur in rapidly evolving genes. Genes that recognize infection and transduce signal within the immune response have low levels of variation consistent with selective sweeps, supporting the idea that these two aspects of the immune system are subject to elevated pathogen pressures. Our ability to understand the selective pressures that shape the antibacterial immune response is limited by our lack of knowledge about the epidemiology of disease in natural populations. I have performed a survey of natural bacterial pathogens in wild populations of D. melanogaster in Ithaca, New York, with the aim of understanding the rates, distributions, and identities of bacterial infections in the wild. I find that 0.3% to 2% of wild flies are infected with a diverse array of opportunistic pathogens. The identification and subsequent characterization of natural pathogens will lead to a better understanding of the selective pressures that drive the evolution of the insect immune response. A complete understanding of the evolution of resistance to infection requires consideration of the short term evolutionary dynamics measured through population genetics and phenotypic study of individuals and their pathogens within populations

    Latitudinal clines in gene expression and cis-regulatory element variation in Drosophila melanogaster

    Get PDF
    Abstract Background Organisms can rapidly adapt to their environment when colonizing a new habitat, and this could occur by changing protein sequences or by altering patterns of gene expression. The importance of gene expression in driving local adaptation is increasingly being appreciated, and cis-regulatory elements (CREs), which control and modify the expression of the nearby genes, are predicted to play an important role. Here we investigate genetic variation in gene expression in immune-challenged Drosophila melanogaster from temperate and tropical or sub-tropical populations in Australia and United States. Results We find parallel latitudinal changes in gene expression, with genes involved in immunity, insecticide resistance, reproduction, and the response to the environment being especially likely to differ between latitudes. By measuring allele-specific gene expression (ASE), we show that cis-regulatory variation also shows parallel latitudinal differences between the two continents and contributes to the latitudinal differences in gene expression. Conclusions Both Australia and United States were relatively recently colonized by D. melanogaster, and it was recently shown that introductions of both African and European flies occurred, with African genotypes contributing disproportionately to tropical populations. Therefore, both the demographic history of the populations and local adaptation may be causing the patterns that we see

    Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation

    Get PDF
    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age

    Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response.

    Get PDF
    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.This work was funded by a Cambridge- KAUST Academic Excellence Alliance (AEA2) project grant to AP and CVA was supported by a Cambridge Overseas Trust Studentship. JA was supported by a Darwin Trust of Edinburgh. WJP was supported by a Medical Research Council. FMJ was supported by Royal Society Research. EASIH is supported by Cambridge NIHR-BRC. The Wellcome Trust Centre for Human Genetics is funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC hub grant G0900747 91070. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.his is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.ppat.100476

    Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).

    Get PDF
    BACKGROUND: Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. RESULTS: Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (H exp , one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased H exp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. CONCLUSIONS: The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae

    Assembly of the Genome of the Disease Vector <i>Aedes aegypti</i> onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission

    Get PDF
    <div><p>The mosquito <i>Aedes aegypti</i> transmits some of the most important human arboviruses, including dengue, yellow fever and chikungunya viruses. It has a large genome containing many repetitive sequences, which has resulted in the genome being poorly assembled — there are 4,758 scaffolds, few of which have been assigned to a chromosome. To allow the mapping of genes affecting disease transmission, we have improved the genome assembly by scoring a large number of SNPs in recombinant progeny from a cross between two strains of <i>Ae. aegypti</i>, and used these to generate a genetic map. This revealed a high rate of misassemblies in the current genome, where, for example, sequences from different chromosomes were found on the same scaffold. Once these were corrected, we were able to assign 60% of the genome sequence to chromosomes and approximately order the scaffolds along the chromosome. We found that there are very large regions of suppressed recombination around the centromeres, which can extend to as much as 47% of the chromosome. To illustrate the utility of this new genome assembly, we mapped a gene that makes <i>Ae. aegypti</i> resistant to the human parasite <i>Brugia malayi</i>, and generated a list of candidate genes that could be affecting the trait.</p></div
    corecore