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Abstract 

Mosquitoes are one of the most important vectors of human disease. The ability of 

mosquitoes to transmit disease is dependent on the age structure of the population, as 

mosquitoes must survive long enough for the parasites to complete their development and 

infect another human. Age could have additional effects due to mortality rates and vector 

competence changing as mosquitoes senesce, but these are comparatively poorly understood. 

We have investigated these factors using the mosquito Aedes aegypti and the filarial 

nematode Brugia malayi. Rather than observing any effects of immune senescence, we found 

that older mosquitoes were more resistant, but this only occurred if they had previously been 

maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in 

vector competence, meaning that the number of parasites remained relatively unchanged as 

mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp 

spike in mortality after an infected blood meal (“refeeding syndrome”) and few survived long 

enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. 

Our results indicate that old mosquitoes may be inefficient vectors due to low vector 

competence and high mortality, but that frequent blood meals can prevent these effects of 

age. 

Keywords: ageing, Brugia malayi, mosquito, nutrition, refeeding syndrome, survival 
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1 Introduction 

Age is a critical factor affecting the ability of mosquito vectors to transmit diseases 

due to the incubation period parasites require to develop before they are transmitted 

(Macdonald, 1956). This period can be so long that few mosquitoes survive to ages where 

transmission occurs (Garrett-Jones and Shidrawi, 1969). Malarial parasites can take from 9 to 

15 days between being ingested in a blood meal to become fully developed and migrate to the 

mosquito’s salivary glands for transmission (Warrell and Gilles, 2002). The dengue fever 

virus (Chan and Johansson, 2012) and filarial nematodes (Erickson et al., 2009) have similar 

incubation periods. For these diseases, the rate of transmission will depend on the age 

structure of the vector population, and this can be targeted by vector control programmes 

aiming to reduce transmission (Cook et al., 2008).  

Senescence of a variety of traits may alter rates of disease transmission as mosquitoes 

age. For example, there can be declines in rates of blood feeding and flight  (and therefore 

host-seeking behaviour) (Christensen et al., 1986; Sylvestre et al., 2013). Similarly,  Aedes 

aegypti mosquitoes infected with the dengue-fever virus take longer to blood feed as they age 

(Sylvestre et al., 2013), and this may have a negative effect on the vector’s fitness since the 

host’s defensive behaviour can kill the mosquito or prevent a blood meal from being taken 

(Walker and Edman, 1985).  

In many organisms it is common to find that immune system function declines with 

age, a process known as immunosenescence (Nikolich-Žugich and Čičin-Šain, 2010), and this 

has the potential to increase rates of disease transmission by mosquitoes. Immunosenescence  

has been best documented in Drosophila (Eleftherianos and Castillo, 2012; Felix et al., 2012; 

Katewa and Kapahi, 2011; Mackenzie et al., 2011; Remolina et al., 2012), but it also seems to 

be common mosquitoes (Christensen et al., 1986; Chun et al., 1995; Desowitz and 

Chellappah, 1962; Hillyer et al., 2005; Li et al., 1992; Wang et al., 2010). Older Culex 
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pipiens fatigans became more susceptible to the filarial nematode Brugia sp, showing a 

higher parasite load than younger individuals (Desowitz and Chellappah, 1962). As 

mosquitoes age an increase in parasitemia, as well as the size of  parasites was observed in 

older Anopheles quadrimaculatus infected with the filarial nematode Dirofilaria uniformis 

(Duxbury et al., 1961). Melanisation,  a process that involves deposition of melanin on the 

parasite as part of its immune response (Michel et al., 2006), was observed to be reduced in 

older Anopheles gambiae, the primary malaria vector (Chun et al., 1995), as well as in 

insecticide-resistant Culex pipiens (Cornet et al., 2013), and Ae. aegypti infected with 

Dirofilaria immitis (Christensen et al., 1986). The number of haemocytes, a cell type 

involved in melanisation and phagocytosis of parasites, also declined when An. stephensi 

(Foley, 1978) and Ae. aegypti aged (Hillyer et al., 2005).  

Across many species diet alters rates of senescence in many traits, with dietary 

restriction generally reducing the rate of senescence and extending lifespan (Austad, 1989; 

Joy et al., 2010; Masoro, 2005). Similarly diet can alter senescence of  the immune system 

(Ponton et al., 2011).  In disease vectors, diet is also known to directly affect parasite 

development, including Ae. aegypti mosquitoes infected with the filarial nematode Brugia 

pahangi (Sneller and Dadd, 1981), An. stephensi infected with the rodent malaria 

parasite Plasmodium yoelii yoelii (Lambrechts et al., 2006), and the kissing bug Rhodnius 

prolixus challenged with Enterobacter cloacae (Feder et al., 1997).   

In nature adult mosquitoes commonly feed on two foods with very different 

nutritional content - blood and sugars such as nectar.  Fructose from nectar is a source of 

energy for female mosquitoes in the wild and is likely to be especially important when 

suitable vertebrate hosts are scarce (Foster, 1995). When Ae. aegypti female feed only on 

sugar they can have increased lifespan, similar to the effect seen when other species are 

maintained on a restricted diet (Joy et al., 2010). Therefore, this form of dietary restriction 
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provides a way to both manipulate and understand aging in mosquitoes, and may also be 

relevant to disease transmission when access to blood meals in the wild is restricted, as it 

might occur in night-feeding species if bed nets are widely used.  

Aedes aegypti, the primary vector of dengue and yellow fever viruses, and the filarial 

nematode B. malayi have been used as a laboratory model to investigate host-parasite 

interactions (Macdonald, 1962). Brugia malayi causes lymphatic filariasis in humans, also 

known as elephantiasis, it occurs in South East Asia and is responsible for 10% of the total 

cases, while Wuchereria bancrofti causes the remainder (Ichimori, 2010). Lymphatic 

filariasis is a highly debilitating disease, which affects 120 million people in the world 

(Ichimori, 2010). The infected patient may develop lymphoedema and scrotal hydrocele after 

several years of infection, which makes lymphatic filariasis the second leading cause of 

chronic disability worldwide (Ichimori, 2010). In the mosquito, the filarial nematode 

develops in the indirect flight muscles until fully developed to a third instar larva when it 

migrates to the mosquito’s proboscis to infect another human host in the next blood meal 

(Beckett and Macdonald, 1971). Most known natural populations of Ae. aegypti are resistant 

to the filarial nematode, with the exception of populations found in peri-domestic and 

forested areas of East Africa (Paige and Craig, 1975; Rodriguez and Craig Jr, 1973). 

Resistant individuals are able to kill the parasites during its early development, approximately 

two days after infection (Magalhaes et al., 2008; Rodriguez et al., 1984).  

Despite its medical importance, little is known about A. aegypti’s ageing mechanisms, 

how senescence affects the mosquito’s vectorial capacity (Christensen et al., 1986; Hillyer et 

al., 2005; Sylvestre et al., 2013), and how diet affects vector competence when mosquitoes 

age. In this study we investigated how the age of Ae. aegypti influences two key traits 

affecting disease transmission — susceptibility to the parasite and the probability of surviving 

sufficiently long after blood feeding for the parasite to be transmitted. We also examined how 
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these traits were altered by dietary restriction, where mosquitoes were maintained on sugar 

and not allowed to blood-feed before exposure to the parasite. This form of dietary restriction 

is known extend lifespan in Ae. aegypti, so it is useful to see if changes in vector competence 

are governed by a similar mechanism. Furthermore, wild mosquitoes may also sometimes 

have restricted access to blood.  We found that very young Ae. aegypti are highly susceptible 

to the filarial nematode B. malayi. Contrary to the expected outcome of immunosenescence, 

females became less susceptible with age, but frequent blood feeding before infection 

reversed the susceptibility decline in older mosquitoes.  We did not find parasites in a 

genetically resistant line at any age, suggesting that genetic resistance to B. malayi does not 

senesce. Therefore, age and the history of blood-feeding can substantially alter the 

susceptibility of Ae. aegypti to B. malayi. 

2 Material and Methods  

2.1 Ethics statement 

This study was approved by the Animals in Science Regulation Unit from the Home 

Office Science, United Kingdom, under the license PIL 70/25044. The study adhered to the 

principles of the Animals (Scientific Procedures) Act 1986. 

 

2.2 Mosquito lines 

To investigate how susceptibility to B. malayi and other fitness parameters change as 

Ae. aegypti mosquitoes age, we used a susceptible (LVP-S) and a resistant line (LVP-R) that 

are derived from the same laboratory strain (Liverpool). This strain originated from West 

Africa and has been maintained in the lab since 1936 (Macdonald, 1962). Susceptibility to B. 

malayi was originally segregating in the Liverpool strain, but in order to sequence the 

mosquito genome several rounds of inbreeding were required (Nene et al., 2007) and 
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resistance became fixed (Juneja et al., 2014). Susceptible LVP-S stocks have been maintained 

by the NIAID/NIH Filariasis Research Reagent Resource Centre (FR3, Atlanta, Georgia, 

USA) to culture B. malayi. We obtained LVP-S from the FR3 and LVP-R from the Malaria 

Research and Reference Reagent Resource Centre (MR4, ATCC, Manassas, Virginia, USA). 

 

2.3 Experimental design 

To test if age affected the susceptibility of mosquitoes to B. malayi, we infected 

mosquitoes of six different ages. For the LVP-S line we hatched eggs every week to create a 

time series of ages from 5 days to 6 weeks (age of adult mosquitoes was calculated from 

emergence). The lifespan of female mosquitoes in the laboratory is approximately eight 

weeks, so we chose this range because five days is when the majority of females have mated 

and are prone to take a blood meal, and we needed to keep mosquitoes for a further 2 weeks 

after infection to check the development of the parasites. Therefore we had LVP-S adult 

mosquitoes of 6 different ages: six, five, four, three, two  weeks and five days old. For the 

LVP-R lines we only investigated old (six and five weeks old) and young (five days old) 

mosquitoes. We omitted some time points in this treatment because the aim was to test 

whether resistant individuals would become susceptible with age: having young and old 

treatments would suffice to explain this.  

We hatched eggs and first instar larvae, which were density controlled to 150 larvae/ 

1500 ml water at 24 hours after eclosion. We gave 1 g of liver powder to larvae every two 

days after emergence and water was changed at the same rate. Adult females and males were 

kept in cages (32.5 x 32.5 x 32.5 cm, BugDorm), with two replicates per treatment.  

To test if blood feeding prior to the infected blood meal affects how susceptibility 

changes with age, we maintained the mosquitoes on either fructose or fructose and blood, 

with two cages per treatment for each time-point. The fructose was fed to mosquitoes via 
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cotton wool soaked with 10% w/v fructose and 0.1% w/v p-amino benzoic acid (PABA, 

Sigma-Aldrich) on top of cages, with the cotton wool pads being frequently replaced. For the 

blood treatment, we fed females once a week with human blood (NHS Blood and Transplant, 

Addenbrooke’s Hospital, Cambridge, UK) using an artificial feeder (PS6, Hemotek). Females 

that failed to have a blood meal were discarded after each feeding. There was natural 

mortality after adult emergence and approximately 90% of two and three-week old females 

were alive to be infected. Of the older treatments, 65% of six and five-week old females 

survived until the day we infected all females. Mosquitoes in the youngest (five-day) age 

group were only exposed to the fructose treatment because mosquitoes would not take more 

than one blood meal before this age. The majority of mosquitoes from both cages of four-

week old LVP-S fed on blood died one week post adult emergence; therefore we have no data 

for this time point. We did not repeat this because losing this time point did not affect the 

overall aim of the study. We recorded the survival of females every day after the infected 

blood meal.  

 

2.4 Infections  

Brugia malayi was harvested from a euthanised infected gerbil by injecting 30 ml of 

sterile saline solution into the peritoneal cavity of the animal. We made an incision on the 

abdomen of the gerbil and using a funnel we collected the fluid containing microfilariae (mf), 

which was mixed to human blood. All mosquitoes, resistant and susceptible of all ages, were 

fed on the same day and time with blood containing approximately 1000 microfilariae per 20 

µl of blood. Unfed females and males were discarded and fully fed females were kept in 

cages.  
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2.5 Blood meal size  

To estimate the size of the blood meal taken by infected females we measured the 

absorbance of haematin - a product of the digestion of haemoglobin that is defecated after 

feeding (Briegel, 1980).  A subset of the fully-fed females from all treatments (see results for 

exact numbers) was individually placed into 30 ml glass vials soon after the infected blood 

meal was taken to collect defecated material. Three days later, we transferred live females to 

a cage (so we could later check parasite load) and added 1 ml of 1% w/v LiCO3 solution 

(Sigma-Aldrich) to the vials. We did not estimate the blood meal size of females of the 4 

week treatment because adults died soon after emergence, as mentioned above. The solution 

containing the eluted excrement was read in a spectrophotometer at 387 nm, using the LiCO3 

as a blank.  

 

2.6 Parasite load 

We measured the parasite load of all live females on either the 10
th

 or 11
th

 days post 

infection, when the parasites had fully developed into L3 larvae, the infective stage (Erickson 

et al., 2009). We separated the thorax from the abdomen of each female using entomological 

blunt forceps and incubated this in 50 µl phosphate buffered saline (PBS) at 37
o
C for 1 hour, 

which causes L3s to exit the carcass. The supernatant was transferred to a microscope slide 

and the number of parasites was counted.  

 

2.7 Statistical analysis 

We used R version 2.15.1 (R Foundation for Statistical Computing, Vienna, Austria) to 

perform all tests and the package ggplot2 to design the graphs (Wickham, 2009). In all cases 

we checked for non-linear effects of the age by testing if polynomial functions better fitted 

the data. To explain the number of parasites infecting females we fitted a linear mixed-effect 
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model with a Poisson error distribution with the package lme4 (Bates et al., 2012). The 

equation was as follows:  

ni,j,k,l = log
-1

(αk + θl + α: θkl + σj + ε i,j,k,l) 

where ni,j,k,l  is the number of worms infecting female i from cage j of age k and food 

treatment l, αk is a fixed effect of age as a covariate (a continuous variable), θl is the food 

treatment given to females prior to the infected blood meal,  σj  is a random effect of the cage 

the mosquitoes are housed in and ε i,j,k,l is the residual error to allow over-dispersion within 

each cage. 

We fitted a linear mixed-effect model to investigate differences in blood meal size 

given age and treatment. Our equation was as follows:   

Bi,j,k,l = αk + θl + σj + ε i,j,k,l 

Where Bi,j,k,l is the absorbance of haematin in the faeces of female i, from cage j, age k and 

food treatment l, θl is the food treatment females received before the infected blood meal, σj 

is a random effect of the cage the mosquitoes were housed in and ε i,j,k,l is the residual. αk is a 

fixed effect of the age of females, and because the effect of age was not linear, this was fitted 

as a second order polynomial. We analysed data of susceptible and resistant lines separately 

because we failed to get data from older resistant mosquitoes fed on fructose before the 

infections; these individuals died before we measured the blood meal size. Therefore for the 

LVP-R line our equation was similar to the above, but without θl. 

The effect of age and food source on survival rates was analysed using a Cox’s 

proportional hazards mixed effect model, which accounted for between-cage variation in 

survival rates. The hazard for the i
th

 female from cage j at time t post infection was modelled 

as: 

Hij(t) = H0(t)e
Xiβ + bj
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Where H0(t) is the baseline hazard at time t, Χi is a vector of the fixed effects, β is the 

corresponding vector of coefficients, and bj is a random effect of cage j nested within time 

post infection. The fixed effects comprised strain, food treatment and day of infection. 

Mosquitoes that were still alive at day 10 post infection were censored. The model was fitted 

by maximum likelihood using the coxme (Therneau, 2012) package.  

 

3 Results 

3.1 Susceptibility to B. malayi declines with age, but frequent blood-feeding can reverse 

the decline  

When mosquitoes were maintained on a diet of fructose, their susceptibility to B. 

malayi declined rapidly with age (Figure 1). Five-day-old mosquitoes that fed on infected 

blood became infected with an average of 3.3 L3 worms, and 80% (N=71) of the mosquitoes 

carried at least one worm. When two-week-old mosquitoes were infected, the average 

number of parasites that developed had dropped to 2.0 (69 % infected, N=54), and by five 

weeks this had declined further to 0.9 (58%, N=14).  

If the mosquitoes were regularly fed on blood, then the decline in susceptibility with 

age was considerably less. At two-weeks old, the previously blood-fed and fructose fed 

mosquitoes developed similar parasite burdens, which were reduced compared to five-day old 

mosquitoes (Figure 1). However, this decline was reversed in older mosquitoes that received 

a blood meal prior to infections.  This diet-specific effect of age on parasite load is highly 

significant (Figure 1; diet-age interaction: Z = -3.95, p < 0.0001), with a smaller main effect 

of diet (main effect diet: Z = 2.2, p = 0.02).  
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Most A. aegypti genotypes in nature are genetically resistant to B. malayi, so we also 

tested if the extent of this resistance changed with age in a laboratory line, but did not find 

any parasites in the 180 resistant individuals we dissected (Table 1). 

 

3.2 Younger females engorge more blood than older females 

Changes in parasite burden as mosquitoes age could reflect changes in the amount of 

blood and therefore microfilaria that are ingested. Therefore, we tested if the size of the blood 

meal was affected by age and the diet mosquitoes had been maintained on by measuring the 

amount of haematin that they excrete after having the infected blood meal. However, care is 

needed whilst interpreting these results as infected or old animals might process haemoglobin 

differently and we did not have means to test this. In both the genetically resistant and 

genetically susceptible mosquitoes, five-day old females engorged a larger blood meal than 

older females (Figure 2A; LVP-S main effect age: F (2-123) = 5.14, p < 0.01, LVP-R main 

effect age: F (1-61) = 13.19, p < 0.001). The differences in blood meal size are largely driven 

by five-day old females taking the largest blood meals (Figure 1A). To confirm this we did 

pair wise comparisons of all the blood-meal sizes taken at different ages and on different 

diets. For the LVP-S mosquitoes, the only individually significant differences were between 

five-day old mosquitoes and the treatments with the three smallest blood meals – two-week 

old females fed on blood (Tukey, Z = 3.56, p < 0.01), three-week old females fed on fructose 

(Tukey, Z = 3.46, p = 0.01) and five-week old females fed on blood (Tukey, Z = -3.74, p < 

0.01).  

 

3.3 Fructose-feeding can result in high mortality in old mosquitoes  

The survival of mosquitoes after infection is crucial for parasite transmission. If 

females die before the complete development of the parasite, they can no longer infect the 
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human host. We found that there was no significant overall tendency for older mosquitoes to 

die at a higher rate in the 10 days after they had been infected (Figure 3; main effect of the 

covariate age: Z = 0.44, p = 0.66). However, there was a dramatic increase in the mortality of 

older mosquitoes if they had been maintained on just a fructose diet before their infective 

blood meal - all the six-week old LVP-S females died compared none of the five-day old 

mosquitoes (Figure 3; diet-age interaction: Z = 4.56, p < 0.00001).  

This mortality among the older fructose-fed mosquitoes was largely attributed to a 

spike in mortality rates between days two and four after feeding on the infected blood meal; 

after day four the survival of females fed on both diets tended to follow the same pattern 

(Figure 3).  This is supported statistically, as when each 24 hour period is analysed 

separately, most of the significant differences in mortality rate occur between days two and 

four (Figure 3). We observed a significant difference in mortality between days two and three 

in five-week old LVP-S (Fisher’s exact test, p = 0.008), in five-week old LVP-R (Fisher’s 

exact test, p = 0.007) and in six-week old LVP-R (Fisher’s exact test, p = 0.04). In six-week 

old LVP-S the difference in mortality rate was observed between days three and four 

(Fisher’s exact test, p = 0.003) as well as between days seven and eight (Fisher’s exact test, p 

= 0.01).  

Mortality does not seem to be attributed to the parasite as the rate in which females died 

did not differ between genetically susceptible and genetically resistant females (main effect 

of genotype: Z = -0.82, p = 0.41). In addition, three-week old females of both diet treatments 

died at a similar rate, but the difference in parasite burden in this time point is high (Fig 1). 

These observations also indicate that differences in parasite burden (Fig 1) are not explained 

by parasites killing infected individuals in some treatments and resulting in lower overall 

infection rates.  
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4 Discussion 

We found that the vector competence of Ae. aegypti was heavily influenced by the 

combination of age and diet. Rather than showing signs of the immune system senescing, 

females harboured fewer B. malayi as they aged. However, this was only the case if they 

were maintained on fructose prior to the infected blood meal, as old females that had 

frequently blood-fed remained as prone to harbour the filarial nematodes as younger females. 

Genetically resistant mosquitoes also showed no signs of immunosenescence, as no worms 

developed regardless of whether they were young or old.  

The diet of mosquitoes has been shown to affect their susceptibility to parasites in other 

species. Similar results to ours were found when different-aged An.gambiae were maintained 

on either fructose or blood before receiving a blood meal infected with Plasmodium 

falciparum – the number of parasites declined with age in the fructose-fed females, but 

remained stable in the blood-fed females (Okech et al., 2004).  This suggests that there may 

be changes in the nutritional environment inside the mosquito that either prevent or delay 

worm development. There are several reasons why maintaining mosquitoes on a nutrient-

poor diet might cause them to be prone to harbour less Brugia as they get older. It could be a 

direct effect of nutrient limitation affecting the parasite, as the parasite must acquire nutrients 

from the mosquito to develop and grow (Combes, 1997). If mosquitoes do not take a blood 

meal they will become deprived of nutrients such as amino acids, proteins, and cholesterol 

(Briegel, 1990; Caragata et al., 2014; Gary and Foster, 2001; Ziegler and Van Antwerpen, 

2006), which might impair the development of B. malayi larvae. Alternatively, many other 

aspects of the mosquito physiology, immunity and microbiota are changed by blood feeding 

(Boissière et al., 2012; Castillo et al., 2011; Kokoza et al., 2001), and these could affect 

parasite development in older mosquitoes. 
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Our results suggest that vector competence of Ae. aegypti may remain largely 

unchanged as they age in areas where they have unrestricted access to blood meals. This is 

likely to be the case in most populations with a high human density, where females rarely 

feed on nectar (Edman et al., 1992). However, in areas with low human population density or, 

in the case of night other night feeding mosquito species, where there are high levels of bed 

net use prevent blood meals being taken, mosquitoes may be decline in susceptibility as they 

grow older. The implication of this can be a reduction in the disease transmission not only as 

a direct consequence of preventing blood feeding but also due to a reduction in the survival or 

vector competence of females due to low nutritional diet. Whether this is ever important in 

nature would require studies of the nutritional status of wild mosquitoes. 

For old females that had been maintained on fructose, there was a spike in mortality 

two to four days after feeding on infected blood. This meant that few of these females would 

have survived long enough to transmit the parasite. However, when mosquitoes had been 

maintained on blood, then the majority of the oldest females were alive at day 10 post-

infection, allowing the full development of the parasite. These observations are supported by 

a previous study which observed that Ae. aegypti females that were offered only one blood 

meal had their lifespan halved comparing to females that were blood fed once a week 

(Putnam and Shannon, 1934). Therefore the rate at which mosquitoes survive is strongly 

dependant on their diet, and this will in turn affect the vector capacity of the population.  This 

can be particularly important for mosquito control strategies that are aimed to prevent 

mosquitoes from taking a blood meal, such as bed nets.  The alternative sources of food for 

females are either sugar nectar (which is the male’s only diet) or blood from other 

vertebrates. Therefore, understanding how diet affects the survival of mosquitoes of various 

ages can be important for such strategies. 
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The parasite does not seem to be causing mosquitoes to die in these experiments, as 

mortality rates for both genetically resistant and susceptible females are similar. It is common 

for models of disease transmission to assume that mortality rates are constant with age 

(Novoseltsev et al., 2012; Styer et al., 2007), but our results suggest that the extent to which 

this will be the case depends on the diet of the mosquito. 

The sharp increase in mortality that occurs a few days after a fructose-fed mosquito 

blood feeds for the first time is a form of refeeding syndrome. This syndrome was first 

observed in World War I, when malnourished soldiers were re-fed and developed abnormal 

medical conditions (Keys, 1950). After a period of starvation, if a nutritious meal is given to 

a starved patient it can lead to malfunctions of kidney, nerve, cardiac and skeletal muscle 

cells, which can ultimately lead to death (Khan et al., 2011). It tends to manifest in the first 

few days after the feeding re-initiation, and happens due to changes in electrolytes in serum 

that can affect the cell membrane potential (Crook et al., 2001). It is possible that these old 

and partially starved mosquitoes may experience similar metabolic stresses. The higher 

mortality of older females occurred during the period when females would be producing 

eggs. A blood meal triggers a cascade of metabolic events that culminate with egg production 

four days later (Putnam and Shannon, 1934), and it is possible that these substantial 

metabolic requirements contributed to the mortality rate (Briegel et al., 2002, 2001).  

We conclude that the effects of the mosquito age on parasite development and survival 

critically depend on the quality of the mosquito’s diet. Frequent blood meals earlier in life are 

critical in maintaining the parasite load and keeping the mosquitoes alive until the parasite 

fully develops. If females feed only on fructose, then parasitemia and survival after infection 

are impaired. In this model system, mosquitoes remain effective vectors as they age, as long 

as females are well-nourished. 
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Table 1: Parasite load of genetically resistant females of different ages, fed on either fructose 

or blood 

 Parasite load 

Age Fructose N Blood N 

5 days 0 90 - - 

5 weeks 0 6 0 37 

6 weeks 0 15 0 31 
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Fig. 1. Changes in parasite burden in genetically susceptible (LVP-S) females of Ae. aegypti 

females. Mosquitoes of different ages were fed on either blood and fructose (red) or fructose 

(blue) prior to the infected blood meal. Age is given in days (d) or weeks (w). Vertical bars 

represent standard errors. 

 

 

Fig. 2. Blood meal size of genetically susceptible (LVP-S) and genetically resistant (LVP-R) 

females of A. aegypti mosquitoes. The amount of haematin in mosquito faeces is used as a 

proxy of blood meal size, measured as absorbance at 387 nm. Mosquitoes of different ages 
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were fed on either blood and fructose (red) or fructose (blue) prior to the infected blood meal. 

Age is given in days (d) or weeks (w). Vertical bars represent standard errors. Numbers 

above bars represent sample size. 

 

 

 

Fig. 3. Survival of Aedes aegypti females of different ages and diet after a blood meal 

containing B. malayi microfilaria. Genetically susceptible (LVP-S) and genetically resistant 

(LVP-R) females were fed on either blood (red) or fructose (blue) before being given the 
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infected blood meal (day 0). We performed Fisher’s exact test to investigate if there were 

differences in daily mortality between females fed on different diets. Significant differences 

are indicated on the graph (* p < 0.05; ** p < 0.01).  


