227 research outputs found

    Integrated working: a review of the evidence

    Get PDF

    “Because we have really unique art”: Decolonizing Research with Indigenous Youth Using the Arts

    Get PDF
    Indigenous communities in Canada share a common history of colonial oppression. As a result, many Indigenous populations are disproportionately burdened with poor health outcomes, including HIV. Conventional public health approaches have not yet been successful in reversing this trend. For this study, a team of community- and university-based researchers came together to imagine new possibilities for health promotion with Indigenous youth. A strengths-based approach was taken that relied on using the energies and talents of Indigenous youth as a leadership resource. Art-making workshops were held in six different Indigenous communities across Canada in which youth could explore the links between community, culture, colonization, and HIV. Twenty artists and more than 85 youth participated in the workshops. Afterwards, youth participants reflected on their experiences in individual in-depth interviews. Youth participants viewed the process of making art as fun, participatory, and empowering; they felt that their art pieces instilled pride, conveyed information, raised awareness, and constituted a tangible achievement. Youth participants found that both the process and products of arts-based methods were important. Findings from this project support the notion that arts-based approaches to the development of HIV-prevention knowledge and Indigenous youth leadership are helping to involve a diverse cross-section of youth in a critical dialogue about health. Arts-based approaches represent one way to assist with decolonization for future generations

    LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    Get PDF
    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy

    'Culture' as HIV prevention: Indigenous youth speak up!

    Get PDF
    This article explores the ways in which (a) Indigenous youth involved in an HIV intervention took up and reclaimed their cultures as a project of defining ‘self’, and (b) how Indigenous ‘culture’ can be used as a tool for resistance, HIV prevention and health promotion. Data were drawn from the Taking Action Project: Using arts-based approaches to develop Aboriginal youth leadership in HIV prevention. ‘By youth, for youth’ HIV education and awareness workshops were facilitated in six Indigenous communities across Canada, incorporating traditional and contemporary art forms to explore how youth perceived the links between structural inequality and HIV vulnerability. Over 100 youth participated, with 70 partaking in individual interviews to reflect on their experiences at the workshops. Interviews were audio-recorded, transcribed verbatim and analysed using NVivo software. Indigenous youth understood culture as a complex construct that included reconnecting to land, body, history, community and ceremony. For many youth, being Aboriginal and participating in cultural activities was seen as important for intergenerational healing, empowerment, health and combatting HIV. Youth spoke excitedly of their attempts to reclaim their languages and cultures despite barriers. They also understood art as a medium for self-expression and as an important site of cultural evolution.Our project demonstrates that the incorporation of culture within health strategies is important for effective HIV prevention amongst Indigenous youth. Reclaiming Indigenous cultures, languages and ceremonies may help to nurture future generations, diminish cycles of victimisation and combat hopelessness by reconnecting youth to stories of resistance and survival.Keywords: Indigenous youth, culture, HIV prevention, arts-based researc

    Genome-Wide Analysis of the Effects of Heat Shock on a Saccharomyces cerevisiae Mutant With a Constitutively Activated cAMP-Dependent Pathway

    Get PDF
    We have used DNA microarray technology and 2-D gel electrophoresis combined with mass spectrometry to investigate the effects of a drastic heat shock from 30℃ to 50℃ on a genome-wide scale. This experimental condition is used to differentiate between wild-type cells and those with a constitutively active cAMP-dependent pathway in Saccharomyces cerevisiae. Whilst more than 50% of the former survive this shock, almost all of the latter lose viability. We compared the transcriptomes of the wildtype and a mutant strain deleted for the gene PDE2, encoding the high-affinity cAMP phosphodiesterase before and after heat shock treatment. We also compared the two heat-shocked samples with one another, allowing us to determine the changes that occur in the pde2Δ mutant which cause such a dramatic loss of viability after heat shock. Several genes involved in ergosterol biosynthesis and carbon source utilization had altered expression levels, suggesting that these processes might be potential factors in heat shock survival. These predictions and also the effect of the different phases of the cell cycle were confirmed by biochemical and phenotypic analyses. 146 genes of previously unknown function were identified amongst the genes with altered expression levels and deletion mutants in 13 of these genes were found to be highly sensitive to heat shock. Differences in response to heat shock were also observed at the level of the proteome, with a higher level of protein degradation in the mutant, as revealed by comparing 2-D gels of wild-type and mutant heat-shocked samples and mass spectrometry analysis of the differentially produced proteins

    X Chromosome Evolution in Cetartiodactyla

    Get PDF
    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups

    Growth control of the eukaryote cell: a systems biology study in yeast.

    Get PDF
    BACKGROUND: Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. RESULTS: Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. CONCLUSION: This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore