93 research outputs found

    Binge Drinking: In Search of its Molecular Target via the GABAA Receptor

    Get PDF
    Binge drinking, frequently referred to clinically as problem or hazardous drinking, is a pattern of excessive alcohol intake characterized by blood alcohol levels ≥0.08 g% within a 2-h period. Here, we show that overexpression of α1 subunits of the GABAA receptor contributes to binge drinking, and further document that this involvement is related to the neuroanatomical localization of α1 receptor subunits. Using a herpes simplex virus amplicon vector to deliver small interference RNA (siRNA), we showed that siRNA specific for the α1 subunit (pHSVsiLA1) caused profound, long-term, and selective reduction of gene expression, receptor density, and binge drinking in high-alcohol drinking rats when delivered into the ventral pallidum (VP). Scrambled siRNA (pHSVsiNC) delivered similarly into the VP failed to alter gene expression, receptor density, or binge drinking. Silencing of the α1 gene in the VP, however, failed to alter binge sucrose or water intake. These results, along with our prior research, provide compelling evidence that the α1-containing GABAA receptor subunits are critical in the regulation of binge-like patterns of excessive drinking. Collectively, these data may be useful in the development of gene-based and novel pharmacological approaches for the treatment of excessive drinking

    人工心臓への適用を目的としたダブルステータ型磁気浮上ポンプの開発

    Get PDF
    The clinical pharmacology of fentanyl and alfentanil was examined in opioid-experienced volunteers with agonist and antagonist sensitivity measures. Two studies used within-subject, placebo-controlled, crossover designs. In study 1, fentanyl (0.125, 0.25 mg/70 kg i.v.) was followed at 0, 20, 60 and 180 min by naloxone (10 mg/70 kg i.m.). Agonist effects during 180-min and 0-min (control; simultaneous fentanyl-naloxone i.v. infusion) challenge sessions were compared. Fentanyl rapidly constricted pupils, depressed respiration and produced subjective high and opiate symptoms lasting 60 to 120 min, depending on the measure. Naloxone precipitated withdrawal symptoms of comparable intensity at each challenge point. In study 2, fentanyl (0.125, 0.25 mg/70 kg i.v.), alfentanil (1, 2 mg/70 kg i.v.) and saline were followed at 1 and 6 hr by naloxone (10 mg/70 kg i.m.). Agonist effects were examined during 6-hr challenge sessions. The two drugs produced a comparable range of effects with similar peak magnitude for 0.125 mg/70 kg fentanyl and 1 mg/70 kg alfentanil and for 0.25 mg/70 kg fentanyl and 2 mg/70 kg alfentanil. Alfentanil\u27s duration of action was brief ( \u3c 60 min). Withdrawal was precipitated at 6 hr only after 0.25 mg/70 kg fentanyl. These findings support typical mu opioid characteristics (pleasurable subjective effects, physical dependence) for both drugs, differential duration of action (fentanyl \u3e alfentanil) and peak effects consistent with a 1:8 (fentanyl/alfentanil) potency ratio

    α4-Containing GABAA Receptors are Required for Antagonism of Ethanol-Induced Motor Incoordination and Hypnosis by the Imidazobenzodiazepine Ro15-4513

    Get PDF
    Alcohol (ethanol) is widely consumed for its desirable effects but unfortunately has strong addiction potential. Some imidazobenzodiazepines such as Ro15-4513 are able to antagonize many ethanol-induced behaviors. Controversial biochemical and pharmacological evidence suggest that the effects of these ethanol antagonists and ethanol are mediated specifically via overlapping binding sites on α4/δ-containing GABAA-Rs. To investigate the requirement of α4-containing GABAA-Rs in the mechanism of action of Ro15-4513 on behavior, wildtype (WT) and α4 knockout (KO) mice were compared for antagonism of ethanol-induced motor incoordination and hypnosis. Motor effects of ethanol were tested in two different fixed speed rotarod assays. In the first experiment, mice were injected with 2.0 g/kg ethanol followed 5 min later by 10 mg/kg Ro15-4513 (or vehicle) and tested on a rotarod at 8 rpm. In the second experiment, mice received a single injection of 1.5 g/kg ethanol ± 3 mg/kg Ro15-4513 and were tested on a rotarod at 12 rpm. In both experiments, the robust Ro15-4513 antagonism of ethanol-induced motor ataxia that was observed in WT mice was absent in KO mice. A loss of righting reflex (LORR) assay was used to test Ro15-4513 (20 mg/kg) antagonism of ethanol (3.5 g/kg)-induced hypnosis. An effect of sex was observed on the LORR assay, so males and females were analyzed separately. In male mice, Ro15-4513 markedly reduced ethanol-induced LORR in WT controls, but α4 KO mice were insensitive to this effect of Ro15-4513. In contrast, female KO mice did not differ from WT controls in the antagonistic effects of Ro15-4513 on ethanol-induced LORR. We conclude that Ro15-4513 requires α4-containing receptors for antagonism of ethanol-induced LORR (in males) and motor ataxia

    The human male liver is predisposed to inflammation via enhanced myeloid responses to inflammatory triggers

    Get PDF
    BACKGROUND & AIM: Men have a higher prevalence of liver disease. Liver myeloid cells can regulate tissue inflammation, which drives progression of liver disease. We hypothesized that sex alters the responsiveness of liver myeloid cells, predisposing men to severe liver inflammation. METHODS: Luminex was done on plasma from Hepatitis B Virus infected patients undergoing nucleoside analogue cessation in 45 male and female patients. We collected immune cells from the sinusoids of uninfected livers of 53 male and female donors. Multiparametric flow cytometry was used to phenotype and characterize immune composition. Isolated monocytes were stimulated with TLR ligands to measure the inflammatory potential and the expression of regulators of TLR signaling. RESULTS: We confirmed that men experienced more frequent and severe liver damage upon Hepatitis B Virus reactivation, which was associated with inflammatory markers of myeloid activation. No differences were observed in the frequency or phenotype of sinusoidal myeloid cells between male and female livers. However, monocytes from male livers produced more inflammatory cytokines and chemokines in response to TLR stimulation than female monocytes. We investigated negative regulators of TLR signaling and found that TOLLIP was elevated in female liver-derived monocytes. CONCLUSIONS: Our data show that enhanced responsiveness of myeloid cells from the male liver predisposes men to inflammation, which was associated with altered expression of negative regulators of TLR signaling

    GABA(A) receptors containing (alpha)5 subunits in the CA1 and CA3 hippocampal fields regulate ethanol-motivated behaviors: an extended ethanol reward circuitry

    Get PDF
    GABA receptors within the mesolimbic circuitry have been proposed to play a role in regulating alcohol-seeking behaviors in the alcohol-preferring (P) rat. However, the precise GABA(A) receptor subunit(s) mediating the reinforcing properties of EtOH remains unknown. We examined the capacity of intrahippocampal infusions of an alpha5 subunit-selective ( approximately 75-fold) benzodiazepine (BDZ) inverse agonist [i.e., RY 023 (RY) (tert-butyl 8-(trimethylsilyl) acetylene-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a] [1,4] benzodiazepine-3-carboxylate)] to alter lever pressing maintained by concurrent presentation of EtOH (10% v/v) and a saccharin solution (0.05% w/v). Bilateral (1.5-20 microgram) and unilateral (0.01-40 microgram) RY dose-dependently reduced EtOH-maintained responding, with saccharin-maintained responding being reduced only with the highest doses (e.g., 20 and 40 microgram). The competitive BDZ antagonist ZK 93426 (ZK) (7 microgram) reversed the RY-induced suppression on EtOH-maintained responding, confirming that the effect was mediated via the BDZ site on the GABA(A) receptor complex. Intrahippocampal modulation of the EtOH-maintained responding was site-specific; no antagonism by RY after intra-accumbens [nucleus accumbens (NACC)] and intraventral tegmental [ventral tegmental area (VTA)] infusions was observed. Because the VTA and NACC contain very high densities of alpha1 and alpha2 subunits, respectively, we determined whether RY exhibited a "negative" or "neutral" pharmacological profile at recombinant alpha1beta3gamma2, alpha2beta3gamma2, and alpha5beta3gamma2 receptors expressed in Xenopus oocytes. RY produced "classic" inverse agonism at all alpha receptor subtypes; thus, a neutral efficacy was not sufficient to explain the failure of RY to alter EtOH responding in the NACC or VTA. The results provide the first demonstration that the alpha5-containing GABA(A) receptors in the hippocampus play an important role in regulating EtOH-seeking behaviors

    The α1 Subunit of the GABA(A) Receptor Modulates Fear Learning and Plasticity in the Lateral Amygdala

    Get PDF
    Synaptic plasticity in the amygdala is essential for emotional learning. Fear conditioning, for example, depends on changes in excitatory transmission that occur following NMDA receptor activation and AMPA receptor modification in this region. The role of these and other glutamatergic mechanisms have been studied extensively in this circuit while relatively little is known about the contribution of inhibitory transmission. The current experiments addressed this issue by examining the role of the GABA(A) receptor subunit α1 in fear learning and plasticity. We first confirmed previous findings that the α1 subunit is highly expressed in the lateral nucleus of the amygdala. Consistent with this observation, genetic deletion of this subunit selectively enhanced plasticity in the lateral amygdala and increased auditory fear conditioning. Mice with selective deletion of α1 in excitatory cells did not exhibit enhanced learning. Finally, infusion of a α1 receptor antagonist into the lateral amygdala selectively impaired auditory fear learning. Together, these results suggest that inhibitory transmission mediated by α1-containing GABA(A) receptors plays a critical role in amygdala plasticity and fear learning
    corecore