1,697 research outputs found

    Formulation structure of the mass-flux convection parameterization

    Get PDF
    AbstractStructure of the mass-flux convection parameterization formulation is re-examined. Many of the equations associated with this formulation are derived in systematic manner with various intermediate steps explicitly presented. The nonhydrostatic anelastic model (NAM) is taken as a starting point of all the derivations.Segmentally constant approximation (SCA) is a basic geometrical constraint imposed on a full system (e.g., NAM) as a first step for deriving the mass-flux formulation. The standard mass-flux convection parameterization, as originally formulated by Ooyama, Fraedrich, Arakawa and Schubert, is re-derived under the two additional hypotheses concerning entrainment–detrainment and environment, and an asymptotic limit of vanishing areas occupied by convection.A model derived at each step of the deduction constitutes a stand-alone subgrid-scale representation by itself, leading to a hierarchy of subgrid-scale schemes. A backward tracing of this deduction process provides paths for generalizing mass-flux convection parameterization. Issues of the high-resolution limit for parameterization are also understood as those of relaxing various traditional constraints. The generalization presented herein can include various other subgrid-scale processes under a mass-flux framework

    Selective alpha(1A)-Adrenoceptor Stimulation Induces Mueller's Smooth Muscle Contraction in an Isolated Canine Upper Eyelid Preparation

    Get PDF
    Purpose: It has been demonstrated that in patients with aponeurotic blepharoptosis, alpha(1)-adrenoceptor stimulation causes the contraction of the upper eyelid tarsal smooth muscle (Mueller's muscle) and opening of the eye. However, alpha(1)-adrenoceptor subtypes mediating the contraction of Mueller's muscle are still unclear. This study was designed to identify the alpha(1)-adrenoceptor subtypes in Mueller's muscle. Materials and Methods: A newly developed canine upper eyelid preparation was retrogradely perfused with a drug-containing Krebs-Henseleit solution through the angular vein in a temperature-controlled organ chamber. The contraction of the preparation was measured with a force-displacement transducer. Results: Phenylephrine, an alpha(1)-adrenoceptor agonist, increased the upper eyelid contractile force in a dose-dependent manner (K(0.5) = 110 nmol). Interestingly, the contraction in response to phenylephrine was persistent and hardly recovered to a base line level for more than 100 min after washout of the drug. WB4101 (100 nM), an alpha(1A)- and alpha(1D)-adrenoceptor antagonist, but not BMY7378 (100 nM), a selective alpha(1D)-adrenoceptor antagonist, competitively inhibited the phenylephrine-induced contraction. ABT-866, a selective alpha(1A)-adrenoceptor agonist, increased the upper eyelid contractile force as effectively as phenylephrine in a dose-dependent manner (K(0.5) = 190 nmol), and the contraction continued again for more than 100 min. Conclusion: These results suggest that selective alpha(1A)-adrenoceptor agonists, such as ABT-866, induce the sustained Mueller's muscle contraction and may be useful in pharmacological treatment of blepharoptosis.ArticleCURRENT EYE RESEARCH. 35(5):363-369 (2010)journal articl

    Dynamics of the outer planets : 1992 Summer Study Program in Geophysical Fluid Dynamics

    Get PDF
    The topic this summer was "The Dynamics of the Outer Planets." Andrew Ingersoll gave an excellent review of the current understanding of the strcture of the atmospheres of Jupiter, Neptune, Saturn, and Uranus. He presented the flow structures inferred from the information gathered by the Voyager probes and other observations. The models of the circulations of the interior and of the weather layer - the jets and vortices that we see in the images - were discussed. Jun-Ichi Yano gave further discussions on vortex dynamics in the lab, analytical, and numerical models as applied to the outer planets. Finally, Andy returned with a discussion of thin atmospheres (some so thin that they disappear at night) and new approaches to the dynamics of the interiors. These lectures provided a thorough background in both the data and the theory. As usual, we had talks (or what are sometimes called interactive seminars!) from many visitors during the summer, some directly related to the main topic and others covering other new research in geophysical fluid dynamics. From these, the fellows and staff found new aras for collaborative research and new ideas which they may explore after the summer. Finally, the summer was completed with talks from the fellows on their individual research during the summer. These reports reflect the thought and energy that went into learning new topics and formulating new problems. We look forward to seeing fuller versions of these in journal articles. We gratefully acknowledge the support of the National Science Foundation and the Office of Naval Research. The assistance of Jake Peirson and Barbara Ewing-DeRemer, made the summer, once again, pleasant and easy for all.Funding was provided by the National Science Foundation under Grant No. OCE8901012

    Metallicity dependence of the Hercules stream in Gaia/RAVE data -- explanation by non-closed orbits

    Get PDF
    The origin of the Hercules stream, the most prominent velocity substructure in the Solar neighbour disc stars, is still under debate. Recent accurate measurements of position, velocity, and metallicity provided by Tycho Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiments (RAVE) have revealed that the Hercules stream is most clearly seen in the metal-rich region ([Fe/H] > 0), while it is not clearly seen in lower metallicity region ([Fe/H] < -0.25). By using a large number of chemo-dynamical 2D test-particle simulations with a rotating bar and/or spiral arms, we find that the observed [Fe/H] dependence of the Hercules stream is a natural consequence of the inside-out formation of the stellar disc and the existence of highly non-closed orbits in the rotating frame of the bar or spiral arms. Our successful models that reproduce the observed properties of the Hercules stream include not only fast-bar-only and fast-bar+spiral models, but also slow-bar+spiral models. This indicates that it is very difficult to estimate the pattern speed of the bar or spiral arms based only on the observations of the Hercules stream in the Solar neighbourhood. As a by-product of our simulations, we make some predictions about the locations across the Galactic plane where we can observe velocity bimodality that is not associated with the Hercules stream. These predictions can be tested by the forthcoming Gaia data, and such a test will improve our understanding of the evolution of the Milky Way stellar disc

    Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To create useful gene combinations in crop breeding, it is necessary to clarify the dynamics of the genome composition created by breeding practices. A large quantity of single-nucleotide polymorphism (SNP) data is required to permit discrimination of chromosome segments among modern cultivars, which are genetically related. Here, we used a high-throughput sequencer to conduct whole-genome sequencing of an elite Japanese rice cultivar, Koshihikari, which is closely related to Nipponbare, whose genome sequencing has been completed. Then we designed a high-throughput typing array based on the SNP information by comparison of the two sequences. Finally, we applied this array to analyze historical representative rice cultivars to understand the dynamics of their genome composition.</p> <p>Results</p> <p>The total 5.89-Gb sequence for Koshihikari, equivalent to 15.7Ă— the entire rice genome, was mapped using the Pseudomolecules 4.0 database for Nipponbare. The resultant Koshihikari genome sequence corresponded to 80.1% of the Nipponbare sequence and led to the identification of 67 051 SNPs. A high-throughput typing array consisting of 1917 SNP sites distributed throughout the genome was designed to genotype 151 representative Japanese cultivars that have been grown during the past 150 years. We could identify the ancestral origin of the pedigree haplotypes in 60.9% of the Koshihikari genome and 18 consensus haplotype blocks which are inherited from traditional landraces to current improved varieties. Moreover, it was predicted that modern breeding practices have generally decreased genetic diversity</p> <p>Conclusions</p> <p>Detection of genome-wide SNPs by both high-throughput sequencer and typing array made it possible to evaluate genomic composition of genetically related rice varieties. With the aid of their pedigree information, we clarified the dynamics of chromosome recombination during the historical rice breeding process. We also found several genomic regions decreasing genetic diversity which might be caused by a recent human selection in rice breeding. The definition of pedigree haplotypes by means of genome-wide SNPs will facilitate next-generation breeding of rice and other crops.</p
    • …
    corecore