19 research outputs found

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    Induction of systemic and mucosal antibody responses in mice immunized intranasally with aluminium-non-adsorbed diphtheria toxoid together with recombinant cholera toxin B subunit as an adjuvant. Vaccine 18:743–751

    No full text
    Abstract Nasal mucosal immunization is very attractive for vaccination to prevent various bacterial and viral infectious diseases because of induction of systemic and mucosal immune responses. The aim of the present study was to investigate the possibility of changing the immunization procedure of diphtheria toxoid (DT) from intramuscular or subcutaneous injection to intranasal administration. Intranasal immunization with aluminium-non-adsorbed diphtheria toxoid (nDT) together with recombinant cholera toxin B subunit (rCTB, 10 mg) induced, at a concentration of 5 Lf, high levels of serum DT-speci®c IgG antibody responses and high or moderate levels of the speci®c IgA antibody responses in all mice and only a slight level of the speci®c IgE antibody responses in some mice. Furthermore, suciently high diphtheria antitoxin titres more than 0.1 international units (IU) ml À1 were obtained from mice which showed high levels of serum DT-speci®c IgG antibody responses. Under the same experimental conditions, induction of signi®cant levels of mucosal DT-speci®c IgA antibody responses occurred in the nasal cavity, the lung, the saliva and vaginal secretions and the small and large intestines of all mice, although there were dierent titres between individual mice. Similar results were also obtained with rCTB-speci®c serum IgG and IgA and mucosal IgA antibody responses; serum rCTB-speci®c IgE antibody titres were not detected. These results show that intranasal administration of nDT with rCTB must be a very useful means for vaccination against diphtheria.

    Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana.

    No full text
    Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naĂŻve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa

    Impaired protective role of HLA-B*57:01/58:01 in HIV-1 CRF01_AE infection: a cohort study in Vietnam

    No full text
    Objectives: Human Leukocyte Antigen HLA-B*57:01 and B*58:01 are considered anti-HIV-1 protective alleles. HLA-B*57:01/58:01-restricted HIV-1 Gag TW10 (TSTLQEQIGW, Gag residues 240-249) epitope-specific CD8+ T cell responses that frequently select for a Gag escape mutation, T242N, with viral fitness cost are crucial for HIV-1 control. Although this finding has been observed in cohorts where HIV-1 subtype B or C predominates, the protective impact of HLA-B*57:01/58:01 has not been reported in Southeast Asian countries where HIV-1 CRF01_AE is the major circulating strain. Here, the effect of HLA-B*57:01/58:01 on CRF01_AE infection was investigated. Methods: The correlation of HLA-B*57:01/58:01 with viral load and CD4 counts were analyzed in the CRF01_AE-infected Vietnamese cohort (N = 280). The impact of the T242N mutation on CRF01_AE replication capacity was assessed. Results: HLA-B*57:01/58:01-positive individuals mostly had HIV-1 with T242N (62/63) but showed neither a significant reduction in viral load nor increased CD4 counts relative to B*57:01/58:01-negative participants. In vitro and in vivo analyses revealed a significant reduction in viral fitness of CRF01_AE with T242N. In silico analysis indicated reduced presentation of epitopes in the context of CRF01_AE compared to subtype B or C in 10/16 HLA-B*57:01/58:01-restricted HIV-1 epitopes. Conclusion: The protective impact of HLA-B*57:01/58:01 on CRF01_AE infection is impaired despite strong suppressive pressure by TW10-specific CD8+ T cells
    corecore