619 research outputs found

    Control Design of Fuzzy Systems with Immeasurable Premise Variables

    Get PDF

    Photoinduced magnetic bound state in itinerant correlated electron system with spin-state degree of freedom

    Full text link
    Photo-excited state in correlated electron system with spin-state degree of freedom is studied. We start from the two-orbital extended Hubbard model where energy difference between the two orbitals is introduced. Photo-excited metastable state is examined based on the effective model Hamiltonian derived by the two-orbital Hubbard model. Spin-state change is induced by photo-irradiation in the low-spin band insulator near the phase boundary. High-spin state is stabilized by creating a ferromagnetic bound state with photo-doped hole carriers. An optical absorption occurs between the bonding and antibonding orbitals inside of the bound state. Time-evolution for photo-excited states is simulated in the time-dependent mean-field scheme. Pair-annihilations of the photo-doped electron and hole generate the high-spin state in a low-spin band insulator. We propose that this process is directly observed by the time-resolved photoemission experiments.Comment: 15 pages, 16 figure

    Wide-Supply-Range All-Digital Leakage Variation Sensor for On-Chip Process and Temperature Monitoring

    Get PDF
    Variation in process, voltage and temperature is a major obstacle in achieving energy-efficient operation of LSI. This paper proposes an all-digital on-chip circuit to monitor leakage current variations of both of the nMOSFET and pMOSFET independently. As leakage current is highly sensitive to threshold voltage and temperature, the circuit is suitable for tracking process and temperature variation. The circuit uses reconfigurable inhomogeneity to obtain statistical properties from a single monitor instance. A compact reconfigurable inverter topology is proposed to implement the monitor circuit. The compact and digital nature of the inverter enables cell-based design, which will reduce design costs. Measurement results from a 65 nm test chip show the validity of the proposed circuit. For a 124 sample size for both of the nMOSFET and pMOSFET, the monitor area is 4500 μm2 and active power consumption is 76 nW at 0.8 V operation. The proposed technique enables area-efficient and low-cost implementation thus can be used in product chips for applications such as dynamic energy and thermal management, testing and post-silicon tuning

    Young athlete with sudden cardiac arrest treated with therapeutic hypothermia

    Full text link
    Reported herein is a coronary anomaly that occurred in a young adolescent athlete who presented with cardiopulmonary arrest. The patient was resuscitated and treated with therapeutic hypothermia. The patient had no associated neurological complications at follow up. Enhanced computed tomography of the heart indicated an anomalous left main coronary artery originating from the right coronary sinus and coursing between the aorta and the pulmonary artery. The patient underwent surgical intervention with coronary artery bypass grafting to prevent symptom recurrence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100297/1/ped12144.pd

    Ectopic Calcification as Discernible Manifestation in Neonates with Pseudohypoparathyroidism Type 1a

    Get PDF
    The diagnosis of pseudohypoparathyroidism type 1a (PHP1a) is challenging, because both the osteodystrophy, such as brachydactyly and round face, and the symptomatic hypocalcemia usually develop beyond infancy. Although ectopic calcification may be an early sign of PHP1a, there are no systematic reviews regarding the time of its appearance. We here report on two PHP1a patients who presented with subcutaneous calcification in neonatal period

    Nov/CCN3 はintegrin αvβ3 を介してマウス造血幹細胞の長期骨髄再建能を制御する

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Probability-guaranteed H∞ finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierIn this paper, the probability-guaranteed H∞ finite-horizon filtering problem is investigated for a class of nonlinear time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the construction of a time-varying filter such that the prescribed H∞ performance requirement can be guaranteed with probability constraint. By using the difference linear matrix inequalities (DLMIs) approach, sufficient conditions are established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed H∞ finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Imprinting spatial helicity structure of vector vortex beam on spin texture in semiconductors

    Full text link
    We present the transfer of the spatially variant polarization of topologically structured light to the spatial spin texture in a semiconductor quantum well. The electron spin texture, which is a circular pattern with repeating spin-up and spin-down states whose repetition rate is determined by the topological charge, is directly excited by a vector vortex beam with a spatial helicity structure. The generated spin texture efficiently evolves into a helical spin wave pattern owing to the spin-orbit effective magnetic fields in the persistent spin helix state by controlling the spatial wave number of the excited spin mode. By tuning the repetition length and azimuthal angle, we simultaneously generate helical spin waves with opposite phases by a single beam.Comment: 6 pages, 4 figure

    Direct numerical simulation of a turbulent flow over an axisymmetric hill

    Get PDF
    Direct numerical simulation (DNS) of a turbulent flow over an axisymmetric hill has been carried out to study the three-dimensional flow separation and reattachment that occur on the lee-side of the geometry. The flow Reynolds number is ReH = 6500, based on free-stream quantities and hill height (H). A synthetic inflow boundary condition, combined with a data feed-in method, has been used to generate the turbulent boundary layer approaching to the hill. The simulation has been run using a typical DNS resolution of Dxþ ¼ 12:5; Dzþ ¼ 6:5, and Dyþ1 ¼ 1:0 and about 10 points in the viscous sublayer. It was found that a separation bubble exists at the foot of the wind-side of the hill and the incoming turbulent boundary layer flow undergoes re-laminarization process around the crest of the hill. These lead to a significant flow separation at the lee-side of the hill, where a very large primary separation bubble embedded with a smaller secondary separations have been captured. The present low-Re simulation reveals some flow features that are not observed by high-Re experiments, thus is useful for future experimental studies
    corecore