132 research outputs found

    Gastrodin attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors

    Get PDF
    Gastrodia elata Blume (Orchidaceae) is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the potential analgesic effect of its active component, gastrodin, has not been systematically studied. This work described the anti-hyperalgesic effect of gastrodin in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. Gastrodin (0.05-0.8 mg/kg) dose-dependently reverted the mechanical hyperalgesia in mice. In addition, the anti-hyperalgesic effect of gastrodin was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). In contrast, gastrodin did not significantly alter the general locomotor activity in mice. Taken together, this study demonstrated that gastrodin possesses robust analgesic efficacy in mice and may be a novel analgesic for the management of neuropathic pain

    Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

    Get PDF
    The prospect of detecting the first galaxies by observing their impact on the intergalactic medium as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this by considering a set of large-scale radiative transfer simulations of reionization in sufficiently large volumes to make statistically meaningful predictions of observable signatures, while also directly resolving all atomically-cooling halos down to 10^8 M_solar. We focus here on predictions of the 21-cm background, to see if upcoming observations are capable of distinguishing a universe ionized primarily by high-mass halos from one in which both high-mass and low-mass halos are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first generation EoR/21-cm radio interferometer arrays should be able to distinguish the case of reionization by high-mass halos alone from that by both high- and low-mass halos, together. Some reionization scenarios yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm PDF distributions. We find that the skewness of the 21-cm PDF distribution smoothed over LOFAR-like window shows a clear feature correlated with the rise of the rms due to patchiness. Measurements of the mean photoionization rates are sensitive to the average density of the regions being studied and therefore could be strongly skewed in certain cases. (abridged)Comment: 33 pages, 38 figures, mostly in color. Comments welcom

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper published in Natur

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow

    Inclusive fitness theory and eusociality

    Get PDF

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87
    • …
    corecore