37 research outputs found

    Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA

    Get PDF
    Many pathogenic Gram-negative bacteria possess tripartite transporters that catalyze drug extrusion across the inner and outer membranes, thereby conferring resistance. These transporters consist of inner (IMP) and outer (OMP) membrane proteins, which are coupled by a periplasmic membrane fusion (MFP) protein. However, it is not know whether the MFP translocates the drug between the membranes, by acting as a channel, or whether it brings the IMP and OMP together, facilitating drug transfer. The MFP EmrA has an elongated periplasmic domain, which binds transported drugs, and is anchored to the inner membrane by a single -helix, which contains a leucine zipper dimerization domain. Consistent with CD and hydrodynamic analyses, the periplasmic domain is predicted to be composed of a -sheet subdomain and an -helical coiled-coil. We propose that EmrA forms a trimer in which the coiled-coils radiate across the periplasm, where they could sequester the OMP TolC. The "free" leucine zipper in the EmrA trimer might stabilize the interaction with the IMP EmrB, which also possesses leucine zipper motifs in the putative N- and C-terminal helices. The -sheet subdomain of EmrA would sit at the membrane surface adjacent to the EmrB, from which it receives the transported drug, inducing a conformational change that triggers the interaction with the OMP

    Mode II fracture energy in the adhesive bonding of dissimilar substrates: carbon fibre composite to aluminium joints

    Get PDF
    The end-notched flexure (ENF) test calculates the value of mode II fracture energy in adhesive bonding between the substrates of same nature. Traditional methods of calculating fracture energy in the ENF test are not suitable in cases where the thickness of the adhesive is non-negligible compared with adherent thicknesses. To address this issue, a specific methodology for calculating mode II fracture energy has been proposed in this paper. To illustrate the applicability of the proposed method, the fracture energy was calculated by the ENF test for adhesive bonds between aluminium and a composite material, which considered two different types of adhesive (epoxy and polyurethane) and various surface treatments. The proposed calculation model provides higher values of fracture energy than those obtained from the simplified models that consider the adhesive thickness to be zero, supporting the conclusion that the calculation of mode II fracture energy for adhesives with non-negligible thickness relative to their adherents should be based on mathematical models, such as the method proposed in this paper, that incorporate the influence of this thickness

    Aspects of the analytical ultracentrifuge determination of the molar mass distribution of polysaccharides

    Get PDF
    Molar mass or ‘molecular weight’ is one of the most fundamental parameters describing a macromolecule. Because of their polydisperse nature, polysaccharides are usually described by distributions of molar mass. SEC-MALS (size exclusion chromatography coupled to multi-angle light scattering) is often a convenient method of choice, but there are many instances where it is unsuitable. Modern AUC (analytical ultracentrifuge) methods provide a valuable alternative – now easier to use than before – and, after briefly reviewing some older procedures, we highlight two recently published and complementary methods, namely, the ‘Extended Fujita’ approach for the analysis of sedimentation velocity data and SEDFIT-MSTAR for the analysis of sedimentation equilibrium data. Nonideality needs to be considered and can be dealt with in a standard way. These methods can also indicate if associative phenomena are present, which can then be quantified using more complex AUC algorithms

    Application of recent advances in hydrodynamic methods for characterising mucins in solution

    Get PDF
    Mucins are the primary macromolecular component of mucus—nature’s natural lubricant—although they are poorly characterised heterogeneous substances. Recent advances in hydrodynamic methodology now offer the opportunity for gaining a better understanding of their solution properties. In this study a combination of such methods was used to provide increased understanding of a preparation of porcine intestinal mucin (PIM), MUC2 mucin, in terms of both heterogeneity and quantification of conformational flexibility. The new sedimentation equilibrium algorithm SEDFIT-MSTAR is applied to yield a weight average (over the whole distribution) molar mass of 7.1 × 106 g mol−1, in complete agreement with size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), which yielded a value of 7.2 × 106 g mol−1. Sedimentation velocity profiles show mucin to be very polydisperse, with a broad molar mass distribution obtained using the Extended Fujita algorithm, consistent with the elution profiles from SEC-MALS. On-line differential pressure viscometry coupled to the SEC-MALS was used to obtain the intrinsic viscosity [η] as a function of molar mass. These data combined with sedimentation coefficient data into the global conformation algorithm HYDFIT show that PIM has a flexible linear structure, with persistence length Lp ~10 nm and mass per unit length, ML ~2380 g mol−1 nm−1, consistent with a Wales-van Holde ratio of ~1.2 obtained from the concentration dependence of the sedimentation coefficient

    Modeling Microstructure and Irradiation Effects

    Full text link

    Introductory remarks

    No full text
    corecore