72 research outputs found

    Large oscillating non-local voltage in multi-terminal single wall carbon nanotube devices

    Full text link
    We report on the observation of a non-local voltage in a ballistic one-dimensional conductor, realized by a single-wall carbon nanotube with four contacts. The contacts divide the tube into three quantum dots which we control by the back-gate voltage VgV_g. We measure a large \emph{oscillating} non-local voltage VnlV_{nl} as a function of VgV_g with zero mean. Though a classical resistor model can account for a non-local voltage including change of sign, it fails to describe the magnitude properly. The large amplitude of VnlV_{nl} is due to quantum interference effects and can be understood within the scattering-approach of electron transport

    Spin-polarized tunneling through randomly transparent magnetic junctions: Reentrant magnetoresistance approaching the Julliere limit

    Get PDF
    Electron conductance in planar magnetic tunnel junctions with long-range barrier disorder is studied within Glauber-eikonal approximation enabling exact disorder ensemble averaging by means of the Holtsmark-Markov method. This allows us to address a hitherto unexplored regime of the tunneling magnetoresistance effect characterized by the crossover from momentum-conserving to random tunneling as a function of the defect concentration. We demonstrate that such a crossover results in a reentrant magnetoresistance: It goes through a pronounced minimum before reaching disorder- and geometry-independent Julliere's value at high defect concentrations.Comment: 7 pages, 5 figures, derivation of Eq. (39) added, errors in Ref. 7 correcte

    Spin-Polarized Transport in Ferromagnet-Marginal Fermi Liquid Systems

    Full text link
    Spin-polarized transport through a marginal Fermi liquid (MFL) which is connected to two noncollinear ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function approach. It is found that the current-voltage characteristics deviate obviously from the ohmic behavior, and the tunnel current increases slightly with temperature, in contrast to those of the system with a Fermi liquid. The tunnel magnetoresistance (TMR) is observed to decay exponentially with increasing the bias voltage, and to decrease slowly with increasing temperature. With increasing the coupling constant of the MFL, the current is shown to increase linearly, while the TMR is found to decay slowly. The spin-valve effect is observed.Comment: 5 pages, 6 figures, Phys. Rev. B 71, 064412 (2005

    Magnetic tunneling junctions with the Heusler compound Co_2Cr_{0.6}Fe_{0.4}Al

    Full text link
    The Heusler alloy is used as an electrode of magnetic tunneling junctions. The junctions are deposited by magnetron dc sputtering using shadow mask techniques with AlO_{x} as a barrier and cobalt as counter electrode. Measurements of the magnetoresistive differential conductivity in a temperature range between 4K and 300K are shown. An analysis of the barrier properties applying the Simmons model to the bias dependent junction conductivity is performed. VSM measurements were carried out to examine the magnetic properties of the samples.Comment: 3 pages, 3 figures submitted to JMMM (proceedings of JEMS04

    Effect of Spin-Flip Scattering on Electrical Transport in Magnetic Tunnel Junctions

    Full text link
    By means of the nonequilibrium Green function technique, the effect of spin-flip scatterings on the spin-dependent electrical transport in ferromagnet-insulator-ferromagnet (FM-I-FM) tunnel junctions is investigated. It is shown that Julliere's formula for the tunnel conductance must be modified when including the contribution from the spin-flip scatterings. It is found that the spin-flip scatterings could lead to an angular shift of the tunnel conductance, giving rise to the junction resistance not being the largest when the orientations of magnetizations in the two FM electrodes are antiparallel, which may offer an alternative explanation for such a phenomenon observed previously in experiments in some FM-I-FM junctions. The spin-flip assisted tunneling is also observed.Comment: Revtex, 4 figure

    Cotunneling through a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations

    Full text link
    Spin-dependent electronic transport through a quantum dot has been analyzed theoretically in the cotunneling regime by means of the second-order perturbation theory. The system is described by the impurity Anderson Hamiltonian with arbitrary Coulomb correlation parameter UU. It is assumed that the dot level is intrinsically spin-split due to an effective molecular field exerted by a magnetic substrate. The dot is coupled to two ferromagnetic leads whose magnetic moments are noncollinear. The angular dependence of electric current, tunnel magnetoresistance, and differential conductance are presented and discussed. The evolution of a cotunneling gap with the angle between magnetic moments and with the splitting of the dot level is also demonstrated.Comment: accepted for publication in Eur. Phys. J.

    Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures

    Full text link
    We report on resonant tunneling magnetoresistance via localized states through a ZnSe semiconducting barrier which can reverse the sign of the effective spin polarization of tunneling electrons. Experiments performed on Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its sign-reversible magnetoresistance can be obtained, depending on the bias voltage, the energy of localized states in the ZnSe barrier and spatial symmetry. The averaging of conduction over all localized states in a junction under resonant condition is strongly detrimental to the magnetoresistance

    Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    Get PDF
    Using non-equilibrium Green functions we calculate the spin-polarized current and shot noise in a ferromagnet--quantum-dot--ferromagnet (FM-QD-FM) system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin-flip (similar to a transverse magnetic field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization \wp. In particular, \wp can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage. The coherent spin-flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression of the Fano factor to values well below 0.5.Comment: Published version. 13 pages, 7 figure

    Spin polarized transport driven by square voltage pulses in a quantum dot system

    Full text link
    We calculate current, spin current and tunnel magnetoresistance (TMR) for a quantum dot coupled to ferromagnetic leads in the presence of a square wave of bias voltage. Our results are obtained via time-dependent nonequilibrium Green function. Both parallel and antiparallel lead magnetization alignments are considered. The main findings include a wave of spin accumulation and spin current that can change sign as the time evolves, spikes in the TMR signal and a TMR sign change due to an ultrafast switch from forward to reverse current in the emitter lead.Comment: 11 pages, 5 figure

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure
    corecore