7 research outputs found

    Oral insulin-mimetic compounds that act independently of insulin

    Full text link
    The hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies. We have characterized a novel class of arylalkylamine vanadium salts that exert potent insulin-mimetic effects downstream of the insulin receptor in adipocytes. These compounds trigger insulin signaling, which is characterized by rapid activation of insulin receptor substrate-1, Akt, and glycogen synthase kinase-3 independent of insulin receptor phosphorylation. Administration of these compounds to animal models of diabetes lowered glycemia and normalized the plasma lipid profile. Arylalkylamine vanadium compounds also showed antidiabetic effects in severely diabetic rats with undetectable circulating insulin. These results demonstrate the feasibility of insulin-like regulation in the complete absence of insulin and downstream of the insulin receptor. This represents a novel therapeutic approach for diabetic patients with severe insulin resistance

    Comparative effects of calcium channel blockers and indomethacin on insulin secretion and blood pressure increase derived from α1‐adrenoceptor stimulation in the rabbit

    Get PDF
    [ES] Se analizan los efectos comparativos del canal de calcio. Los bloqueadores e indometacina sobre la insulina La secreción y el aumento de la presión arterial derivado de la estimulación de los receptores adrenérgicos a1 en el conejo. Los resultados sugieren que los cambios metabólicos y hemodinåmicos mediados por la amidefrina son dos efectos independientes. La secreción de insulina requiere la presencia de calcio extracelular y la síntesis de metabolitos del åcido araquidónico

    Alpha-adrenoreceptor involvement in catecholamine-induced hyperglycaemia in conscious fasted rabbits.

    No full text
    In conscious fasted rabbits an intravenous infusion of phenylephrine (20 micrograms kg-1 min-1) induced hyperglycaemia. The increase in blood glucose was accompanied by a modest increase in insulin secretion and a reduction of liver glycogen. Muscle glycogen and blood lactate levels were not altered by treatment with phenylephrine. Prazosin, 1 mg kg-1 s.c., partially attenuated phenylephrine-induced hyperglycaemia. Phenoxybenzamine infusion (16.6 micrograms kg-1 min-1) for 15 min suppressed the increase in blood glucose and the reduction in liver glycogen evoked by phenylephrine. This alpha-adrenoceptor blocker also clearly attenuated the blood glucose elevation observed on infusing adrenaline at 0.3 microgram kg-1 min-1. Blockade by phenoxybenzamine of phenylephrine- and adrenaline-induced hyperglycaemia was not accompanied by a significant increase in immunoreactive insulin plasma levels. Yohimbine infused at a rate of 20 micrograms kg-1 min-1, also completely blocked phenylephrine-induced hyperglycaemia. This suppressor effect was accompanied by a marked rebound in insulin secretion. It is concluded that in normal fasted rabbits stimulation of alpha-adrenoceptors induces hyperglycaemia. The increase in blood glucose depends mainly on liver glycogenolysis and inhibition of insulin secretion. Separate blockade of each component suffices to reduce alpha-adrenoceptor-mediated hyperglycaemia.Peer Reviewe

    Ras-GRF1 signaling is required for normal ÎČ-cell development and glucose homeostasis

    No full text
    Development of diabetes generally reflects an inadequate mass of insulin-producing ÎČ-cells. ÎČ-cell proliferation and differentiation are regulated by a variety of growth factors and hormones, including insulin-like growth factor I (IGF-I). GRF1 is a Ras-guanine nucleotide exchange factor known previously for its restricted expression in brain and its role in learning and memory. Here we demonstrate that GRF1 is also expressed in pancreatic islets. Interest ingly, our GRF1-deficient mice exhibit reduced body weight, hypoinsulinemia and glucose intolerance owing to a reduction of ÎČ-cells. Whereas insulin resistance is not detected in peripheral tissues, GRF1 knockout mice are leaner due to increased lipid catabolism. The reduction in circulating insulin does not reflect defective glucose sensing or insulin production but results from impaired ÎČ-cell proliferation and reduced neogenesis. IGF-I treatment of isolated islets from GRF1 knockouts fails to activate critical downstream signals such as Akt and Erk. The observed phenotype is similar to manifestations of preclinical type 2 diabetes. Thus, our observations demonstrate a novel and specific role for Ras-GRF1 pathways in the development and maintenance of normal ÎČ-cell number and function
    corecore