1,107 research outputs found

    Pairing-excitation versus intruder states in 68Ni and 90Zr

    Full text link
    A discussion on the nature of the 0+ states in 68Ni (Z=28, N=40) is presented and a comparison is made with its valence counterpart 90Zr (Z=40, N=50). Evidence is given for a 0+ proton intruder state at only ~2.2 MeV excitation energy in 68Ni, while the analogous neutron intruder states in 90Zr reside at 4126 keV and 5441 keV. The application of a shell-model description of 0+ intruder states reveals that many pair-scattered neutrons across N=40 have to be involved to explain the low excitation energy of the proton-intruder configuration in 68Ni.Comment: 10 pages, 2 figures, 1 tabl

    Neutron-skin thickness of 208^{208}Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    Full text link
    The 208^{208}Pb(pp,nγpˉn\gamma\bar p) 207^{207}Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its γ\gamma-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (ΔRpn\Delta R_{pn}). By comparing the theoretical results with the measured transition energy, the value of 0.190 ±\pm 0.028 fm has been determined for ΔRpn\Delta R_{pn} of 208^{208}Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7±0.6J=32.7 \pm 0.6 MeV) and the slope of the symmetry energy (L=49.7±4.4L=49.7 \pm 4.4 MeV), resulting in more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1205.232

    First observation of excited states in 173Hg

    Full text link
    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.Comment: 5 pages, 4 figure

    Shape Coexistence in the Relativistic Hartree-Bogoliubov approach

    Get PDF
    The phenomenon of shape coexistence is studied in the Relativistic Hartree-Bogoliubov framework. Standard relativistic mean-field effective interactions do not reproduce the ground state properties of neutron-deficient Pt-Hg-Pb isotopes. It is shown that, in order to consistently describe binding energies, radii and ground state deformations of these nuclei, effective interactions have to be constructed which take into account the sizes of spherical shell gaps.Comment: 19 pages, 8 figures, accepted in Phys. Rev.

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio
    • …
    corecore