534 research outputs found

    Study of D+Kπ+e+νeD^{+} \to K^{-} \pi^+ e^+ \nu_e

    Full text link
    We present an analysis of the decay D+Kπ+e+νeD^{+} \to K^{-} \pi^+ e^+ \nu_e based on data collected by the BESIII experiment at the ψ(3770)\psi(3770) resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction B(D+Kπ+e+νe)=(3.71±0.03±0.08)%\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%. For 0.8<mKπ<1.00.8<m_{K\pi}<1.0 GeV/c2c^{2} the partial branching fraction is B(D+Kπ+e+νe)[0.8,1]=(3.33±0.03±0.07)%\mathcal{B}(D^{+} \to K^{-} \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%. A partial wave analysis shows that the dominant Kˉ(892)0\bar K^{*}(892)^{0} component is accompanied by an \emph{S}-wave contribution accounting for (6.05±0.22±0.18)%(6.05\pm0.22\pm0.18)\% of the total rate and that other components are negligible. The parameters of the Kˉ(892)0\bar K^{*}(892)^{0} resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the Kˉ(892)0\bar K^{*}(892)^{0} helicity basis form factors in a model-independent way.Comment: 17 pages, 6 figure

    Measurements of absolute hadronic branching fractions of Λc+\Lambda_{c}^{+} baryon

    Get PDF
    Using 567pb1567\rm{pb}^{-1} of e+ee^+e^- collisions recorded at s=4.599GeV\sqrt{s}=4.599\rm{GeV} with the BESIII detector, we report first measurements of absolute hadronic branching fractions of Cabibbo-favored decays of the Λc+\Lambda_{c}^{+} baryon with a double-tag technique. A global least-square fitter is utilized to improve the measured precision. Among the measurements for twelve Λc+\Lambda_{c}^{+} decay modes, the branching fraction for Λc+pKπ+\Lambda_{c}^{+} \rightarrow pK^-\pi^+ is determined to be (5.84±0.27±0.23)%(5.84\pm0.27\pm0.23)\%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other eleven Cabbibo-favored hadronic decay modes are significantly improved

    Confirmation of a charged charmoniumlike state Zc(3885)Z_c(3885)^{\mp} in e+eπ±(DDˉ)e^+e^-\to\pi^{\pm}(D\bar{D}^*)^\mp with double DD tag

    Full text link
    We present a study of the process e+eπ±(DDˉ)e^+e^-\to\pi^{\pm}(D\bar{D}^*)^{\mp} using data samples of 1092~pb1^{-1} at s=4.23\sqrt{s}=4.23~GeV and 826~pb1^{-1} at s=4.26\sqrt{s}=4.26~GeV collected with the BESIII detector at the BEPCII storage ring. With full reconstruction of the DD meson pair and the bachelor π±\pi^{\pm} in the final state, we confirm the existence of the charged structure Zc(3885)Z_c(3885)^{\mp} in the (DDˉ)(D\bar{D}^*)^{\mp} system in the two isospin processes e+eπ+D0De^+e^-\to\pi^+D^0D^{*-} and e+eπ+DD0e^+e^-\to\pi^+D^-D^{*0}. By performing a simultaneous fit, the statistical significance of Zc(3885)Zc(3885)^{\mp} signal is determined to be greater than 10σ\sigma, and its pole mass and width are measured to be MpoleM_{\rm{pole}}=(3881.7±\pm1.6(stat.)±\pm1.6(syst.))~MeV/c2c^2 and Γpole\Gamma_{\rm{pole}}=(26.6±\pm2.0(stat.)±\pm2.1(syst.))~MeV, respectively. The Born cross section times the (DDˉ)(D\bar{D}^*)^{\mp} branching fraction (σ(e+eπ±Zc(3885))×Br(Zc(3885)(DDˉ))\sigma(e^+e^-\to\pi^{\pm}Z_{c}(3885)^{\mp}) \times Br(Z_{c}(3885)^{\mp}\to(D\bar{D}^*)^{\mp})) is measured to be (141.6±7.9(stat.)±12.3(syst.)) pb(141.6\pm7.9(\text{stat.})\pm12.3(\text{syst.}))~\text{pb} at s=4.23\sqrt{s}=4.23~GeV and (108.4±6.9(stat.)±8.8(syst.)) pb(108.4\pm6.9(\text{stat.})\pm8.8(\text{syst.}))~\text{pb} at s=4.26\sqrt{s}=4.26~GeV. The polar angular distribution of the π±\pi^{\pm}-Zc(3885)Z_c(3885)^{\mp} system is consistent with the expectation of a quantum number assignment of JP=1+J^P=1^+ for Zc(3885)Z_c(3885)^{\mp}

    Improved measurement of the absolute branching fraction of D+Kˉ0μ+νμD^{+}\rightarrow \bar K^0 \mu^{+}\nu_{\mu}

    Get PDF
    By analyzing 2.93 fb1^{-1} of data collected at s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+Kˉ0μ+νμ)=(8.72±0.07stat.±0.18sys.)%{\mathcal B}(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=(8.72 \pm 0.07_{\rm stat.} \pm 0.18_{\rm sys.})\%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0Kμ+νμ){\mathcal B}(D^0\to K^-\mu^+\nu_\mu), B(D+Kˉ0e+νe){\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e}), and the lifetimes of the D0D^0 and D+D^+ mesons with the value of B(D+Kˉ0μ+νμ){\mathcal B}(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu}) measured in this work, we determine the following ratios of partial widths: Γ(D0Kμ+νμ)/Γ(D+Kˉ0μ+νμ)=0.963±0.044\Gamma(D^0\to K^-\mu^+\nu_\mu)/\Gamma(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=0.963\pm0.044 and Γ(D+Kˉ0μ+νμ)/Γ(D+Kˉ0e+νe)=0.988±0.033\Gamma(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu})/\Gamma(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=0.988\pm0.033.Comment: 9 pages; 8 figure

    Determination of the number of J/ψJ/\psi events with inclusive J/ψJ/\psi decays

    Get PDF
    A measurement of the number of J/ψJ/\psi events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψJ/\psi . The number of J/ψJ/\psi events taken in 2009 is recalculated to be (223.7±1.4)×106(223.7\pm1.4)\times 10^6, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψJ/\psi events taken in 2012 is determined to be (1086.9±6.0)×106(1086.9\pm 6.0)\times 10^6. In total, the number of J/ψJ/\psi events collected with the BESIII detector is measured to be (1310.6±7.0)×106(1310.6\pm 7.0)\times 10^6, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible.Comment: 10 pages, 6 figure

    Observation of e+eωχc1,2e^+e^- \rightarrow \omega \chi_{c1,2} near s\sqrt{s} = 4.42 and 4.6 GeV

    Full text link
    Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies s>\sqrt{s} > 4.4 GeV, the processes e+eωχc1,2e^+e^- \rightarrow \omega \chi_{c1,2} are observed for the first time. With an integrated luminosity of 1074pb11074 pb^{-1} near s=\sqrt{s} = 4.42 GeV, a significant ωχc2\omega \chi_{c2} signal is found, and the cross section is measured to be (20.9 \pm 3.2 \pm 2.5)\pb. With 567pb1567 pb^{-1} near s=\sqrt{s} = 4.6 GeV, a clear ωχc1\omega \chi_{c1} signal is seen, and the cross section is measured to be (9.5 \pm 2.1 \pm 1.3) \pb, while evidence is found for an ωχc2\omega \chi_{c2} signal. The first errors are statistical and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the ωχc2\omega \chi_{c2} cross section, an enhancement is seen around s=\sqrt{s} = 4.42 GeV. Fitting the cross section with a coherent sum of the ψ(4415)\psi(4415) Breit-Wigner function and a phase space term, the branching fraction B(ψ(4415)ωχc2)\mathcal{B}(\psi(4415)\to\omega\chi_{c2}) is obtained to be of the order of 10310^{-3}.Comment: 7 pages, 3 figure

    Measurement of azimuthal asymmetries in inclusive charged dipion production in e+ee^+e^- annihilations at s\sqrt{s} = 3.65 GeV

    Get PDF
    We present a measurement of the azimuthal asymmetries of two charged pions in the inclusive process e+eππXe^+e^-\rightarrow \pi\pi X based on a data set of 62 pb1\rm{pb}^{-1} at the center-of-mass energy s=3.65\sqrt{s}=3.65 GeV collected with the BESIII detector. These asymmetries can be attributed to the Collins fragmentation function. We observe a nonzero asymmetry, which increases with increasing pion momentum. As our energy scale is close to that of the existing semi-inclusive deep inelastic scattering experimental data, the measured asymmetries are important inputs for the global analysis of extracting the quark transversity distribution inside the nucleon and are valuable to explore the energy evolution of the spin-dependent fragmentation function.Comment: 7 pages, 5 figure

    Observation of an anomalous line shape of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} mass spectrum near the ppˉp\bar{p} mass threshold in J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-}

    Get PDF
    Using 1.09×1091.09\times10^{9} J/ψJ/\psi events collected by the BESIII experiment in 2012, we study the J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-} process and observe a significant abrupt change in the slope of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} invariant mass distribution at the proton-antiproton (ppˉp\bar{p}) mass threshold. We use two models to characterize the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} line shape around 1.85 GeV/c21.85~\text{GeV}/c^{2}: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c21.85~\text{GeV}/c^{2} with strong couplings to ppˉp\bar{p} final states or a narrow state just below the ppˉp\bar{p} mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a ppˉp\bar{p} molecule-like state or bound state with greater than 7σ7\sigma significance

    Observation of hch_{c} radiative decay hcγηh_{c} \rightarrow \gamma \eta' and evidence for hcγηh_{c} \rightarrow \gamma \eta

    Get PDF
    A search for radiative decays of the PP-wave spin singlet charmonium resonance hch_c is performed based on 4.48×1084.48 \times 10^{8} ψ\psi' events collected with the BESIII detector operating at the BEPCII storage ring. Events of the reaction channels hcγηh_{c} \rightarrow \gamma \eta' and γη\gamma \eta are observed with a statistical significance of 8.4σ8.4 \sigma and 4.0σ4.0 \sigma, respectively, for the first time. The branching fractions of hcγηh_{c} \rightarrow \gamma \eta' and hcγηh_{c} \rightarrow \gamma \eta are measured to be B(hcγη)=(1.52±0.27±0.29)×103\mathcal{B}(h_{c} \rightarrow \gamma \eta')=(1.52 \pm 0.27 \pm 0.29)\times10^{-3} and B(hcγη)=(4.7±1.5±1.4)×104\mathcal{B}(h_{c} \rightarrow \gamma \eta)=(4.7 \pm 1.5 \pm 1.4)\times10^{-4}, respectively, where the first errors are statistical and the second are systematic uncertainties.Comment: 7 pages, 2 figure
    corecore