3,409 research outputs found

    Interacting Dark Sector and Precision Cosmology

    Full text link
    We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0H_0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between Λ\LambdaCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8\sigma_8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full kk-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over Λ\LambdaCDM at 3-4 σ\sigma. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two Appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.Comment: 29 pages + 2 Appendices; published versio

    Development of a FAst Compton TELescope (FACTEL)

    Get PDF
    This dissertation describes the development of a FAst Compton TELescope (FACTEL) instrument. It is designed to be the prototype of a larger Advanced Scintillators COmpton Telescope (ASCOT) aimed for general astronomical observations in the medium energy gamma-ray range between 500 keV and 50 MeV. This dissertation presents the instrument and the observation results from the successful 2011 balloon campaign which took place on September 23rd and 24th at Fort Sumner, New Mexico (Flight 624N). The instrument was at float altitude for twenty-six hours at an average 36 km altitude. The FACTEL prototype achieved a 1-ns Time-of-flight resolution between the two detectors layers of the instrument

    Origin of the orbital and spin orderings in rare-earth titanates

    Full text link
    Rare-earth titanates RTiO3_3 are Mott insulators displaying a rich physical behavior, featuring most notably orbital and spin orders in their ground state. The origin of their ferromagnetic to antiferromagnetic transition as a function of the size of the rare-earth however remains debated. Here we show on the basis of symmetry analysis and first-principles calculations that although rare-earth titanates are nominally Jahn-Teller active, the Jahn-Teller distortion is negligible and irrelevant for the description of the ground state properties. At the same time, we demonstrate that the combination of two antipolar motions produces an effective Jahn-Teller-like motion which is the key of the varying spin-orbital orders appearing in titanates. Thus, titanates are prototypical examples illustrating how a subtle interplay between several lattice distortions commonly appearing in perovskites can produce orbital orderings and insulating phases irrespective of proper Jahn-Teller motions.Comment: Accepted in Physical Review

    Origin of band gaps in 3d perovskite oxides

    Get PDF
    With their broad range of magnetic, electronic and structural properties, transition metal perovskite oxides ABO3 have long served as a platform for testing condensed matter theories. In particular, their insulating character - found in most compounds - is often ascribed to dynamical electronic correlations through the celebrated Mott-Hubbard mechanism where gaping arises from a uniform, symmetry-preserving electron repulsion mechanism. However, structural distortions are ubiquitous in perovskites and their relevance with respect to dynamical correlations in producing this rich array of properties remains an open question. Here, we address the origin of band gap opening in the whole family of 3d perovskite oxides. We show that a single-determinant mean-field approach such as density functional theory (DFT) successfully describes the structural, magnetic and electronic properties of the whole series, at low and high temperatures. We find that insulation occurs via energy-lowering crystal symmetry reduction (octahedral rotations, Jahn-Teller and bond disproportionation effects), as well as intrinsic electronic instabilities, all lifting orbital degeneracies. Our work therefore suggests that whereas ABO3 oxides may be complicated, they are not necessarily strongly correlated. It also opens the way towards systematic investigations of doping and defect physics in perovskites, essential for the full realization of oxide-based electronics

    Mott gapping in 3d ABO3 perovskites without Mott-Hubbard interelectronic U

    Full text link
    The existence of band gaps in Mott insulators such as perovskite oxides with partially filled 3d shells has been traditionally explained in terms of strong, dynamic inter-electronic repulsion codified by the on-site repulsion energy U in the Hubbard Hamiltonian. The success of the "DFT+U approach" where an empirical on-site potential term U is added to the exchange-and correlation Density Functional Theory (DFT) raised questions on whether U in DFT+U represents interelectronic correlation in the same way as it does in the Hubbard Hamiltonian, and if empiricism in selecting U can be avoided. Here we illustrate that ab-initio DFT without any U is able to predict gapping trends and structural symmetry breaking (octahedra rotations, Jahn-Teller modes, bond disproportionation) for all ABO3 3d perovskites from titanates to nickelates in both spin-ordered and spin disordered paramagnetic phases. We describe the paramagnetic phases as a supercell where individual sites can have different local environments thereby allowing DFT to develop finite moments on different sites as long as the total cell has zero moment. We use a recently developed exchange and correlation functional ("SCAN") that is sanctioned by the usual single-determinant, mean-field DFT paradigm with static correlations, but has a more precise rendering of self-interaction cancelation. Our results suggest that strong dynamic electronic correlations are not playing a universal role in gapping of 3d ABO3 Mott insulators, and opens the way for future applications of DFT for studying a plethora of complexity effects that depend on the existence of gaps, such as doping, defects, and band alignment in ABO3 oxides

    First-principles study of electron and hole doping in perovskite nickelates

    Full text link
    Rare-earth nickelates R3+^{3+}Ni3+^{3+}O3_3 (R=Lu-Pr, Y) show a striking metal-insulator transition in their bulk phase whose temperature can be tuned by the rare-earth radius. These compounds are also the parent phases of the newly identified infinite layer RNiO2 superconductors. Although intensive theoretical works have been devoted to understand the origin of the metal-insulator transition in the bulk, there have only been a few studies on the role of hole and electron doping by rare-earth substitutions in RNiO3_3 materials. Using first-principles calculations based on density functional theory (DFT) we study the effect of hole and electron doping in a prototypical nickelate SmNiO3. We perform calculations without Hubbard-like U potential on Ni 3d levels but with a meta-GGA better amending self-interaction errors. We find that at low doping, polarons form with intermediate localized states in the band gap resulting in a semiconducting behavior. At larger doping, the intermediate states spread more and more in the band gap until they merge either with the valence (hole doping) or the conduction (electron doping) band, ultimately resulting in a metallic state at 25% of R cation substitution. These results are reminiscent of experimental data available in the literature and demonstrate that DFT simulations without any empirical parameter are qualified for studying doping effects in correlated oxides and to explore the mechanisms underlying the superconducting phase of rare-earth nickelates
    • …
    corecore